Cargando…
Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention
The rise in crime rates in many parts of the world, coupled with advancements in computer vision, has increased the need for automated crime detection services. To address this issue, we propose a new approach for detecting suspicious behavior as a means of preventing shoplifting. Existing methods a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347130/ https://www.ncbi.nlm.nih.gov/pubmed/37447661 http://dx.doi.org/10.3390/s23135811 |
_version_ | 1785073476791435264 |
---|---|
author | Nazir, Amril Mitra, Rohan Sulieman, Hana Kamalov, Firuz |
author_facet | Nazir, Amril Mitra, Rohan Sulieman, Hana Kamalov, Firuz |
author_sort | Nazir, Amril |
collection | PubMed |
description | The rise in crime rates in many parts of the world, coupled with advancements in computer vision, has increased the need for automated crime detection services. To address this issue, we propose a new approach for detecting suspicious behavior as a means of preventing shoplifting. Existing methods are based on the use of convolutional neural networks that rely on extracting spatial features from pixel values. In contrast, our proposed method employs object detection based on YOLOv5 with Deep Sort to track people through a video, using the resulting bounding box coordinates as temporal features. The extracted temporal features are then modeled as a time-series classification problem. The proposed method was tested on the popular UCF Crime dataset, and benchmarked against the current state-of-the-art robust temporal feature magnitude (RTFM) method, which relies on the Inflated 3D ConvNet (I3D) preprocessing method. Our results demonstrate an impressive 8.45-fold increase in detection inference speed compared to the state-of-the-art RTFM, along with an F1 score of 92%,outperforming RTFM by 3%. Furthermore, our method achieved these results without requiring expensive data augmentation or image feature extraction. |
format | Online Article Text |
id | pubmed-10347130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103471302023-07-15 Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention Nazir, Amril Mitra, Rohan Sulieman, Hana Kamalov, Firuz Sensors (Basel) Article The rise in crime rates in many parts of the world, coupled with advancements in computer vision, has increased the need for automated crime detection services. To address this issue, we propose a new approach for detecting suspicious behavior as a means of preventing shoplifting. Existing methods are based on the use of convolutional neural networks that rely on extracting spatial features from pixel values. In contrast, our proposed method employs object detection based on YOLOv5 with Deep Sort to track people through a video, using the resulting bounding box coordinates as temporal features. The extracted temporal features are then modeled as a time-series classification problem. The proposed method was tested on the popular UCF Crime dataset, and benchmarked against the current state-of-the-art robust temporal feature magnitude (RTFM) method, which relies on the Inflated 3D ConvNet (I3D) preprocessing method. Our results demonstrate an impressive 8.45-fold increase in detection inference speed compared to the state-of-the-art RTFM, along with an F1 score of 92%,outperforming RTFM by 3%. Furthermore, our method achieved these results without requiring expensive data augmentation or image feature extraction. MDPI 2023-06-22 /pmc/articles/PMC10347130/ /pubmed/37447661 http://dx.doi.org/10.3390/s23135811 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nazir, Amril Mitra, Rohan Sulieman, Hana Kamalov, Firuz Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention |
title | Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention |
title_full | Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention |
title_fullStr | Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention |
title_full_unstemmed | Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention |
title_short | Suspicious Behavior Detection with Temporal Feature Extraction and Time-Series Classification for Shoplifting Crime Prevention |
title_sort | suspicious behavior detection with temporal feature extraction and time-series classification for shoplifting crime prevention |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347130/ https://www.ncbi.nlm.nih.gov/pubmed/37447661 http://dx.doi.org/10.3390/s23135811 |
work_keys_str_mv | AT naziramril suspiciousbehaviordetectionwithtemporalfeatureextractionandtimeseriesclassificationforshopliftingcrimeprevention AT mitrarohan suspiciousbehaviordetectionwithtemporalfeatureextractionandtimeseriesclassificationforshopliftingcrimeprevention AT suliemanhana suspiciousbehaviordetectionwithtemporalfeatureextractionandtimeseriesclassificationforshopliftingcrimeprevention AT kamalovfiruz suspiciousbehaviordetectionwithtemporalfeatureextractionandtimeseriesclassificationforshopliftingcrimeprevention |