Cargando…
Bridge Damage Identification Using Deep Neural Networks on Time–Frequency Signals Representation
For the purpose of maintaining and prolonging the service life of civil constructions, structural damage must be closely monitored. Monitoring the incidence, formation, and spread of damage is crucial to ensure a structure’s ongoing performance. This research proposes a unique approach for multiclas...
Autores principales: | Santaniello, Pasquale, Russo, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347147/ https://www.ncbi.nlm.nih.gov/pubmed/37448001 http://dx.doi.org/10.3390/s23136152 |
Ejemplares similares
-
Design and Implementation of Opportunity Signal Perception Unit Based on Time-Frequency Representation and Convolutional Neural Network
por: Deng, Zhongliang, et al.
Publicado: (2021) -
On the Use of Concentrated Time–Frequency Representations as Input to a Deep Convolutional Neural Network: Application to Non Intrusive Load Monitoring
por: Houidi, Sarra, et al.
Publicado: (2020) -
Representational Distance Learning for Deep Neural Networks
por: McClure, Patrick, et al.
Publicado: (2016) -
Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals
por: Daydulo, Yared Daniel, et al.
Publicado: (2023) -
Deep Layer Kernel Sparse Representation Network for the Detection of Heart Valve Ailments from the Time-Frequency Representation of PCG Recordings
por: Ghosh, Samit Kumar, et al.
Publicado: (2020)