Cargando…
LPDNet: A Lightweight Network for SAR Ship Detection Based on Multi-Level Laplacian Denoising
Intelligent ship detection based on synthetic aperture radar (SAR) is vital in maritime situational awareness. Deep learning methods have great advantages in SAR ship detection. However, the methods do not strike a balance between lightweight and accuracy. In this article, we propose an end-to-end l...
Autores principales: | Zhao, Congxia, Fu, Xiongjun, Dong, Jian, Feng, Cheng, Chang, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347162/ https://www.ncbi.nlm.nih.gov/pubmed/37447932 http://dx.doi.org/10.3390/s23136084 |
Ejemplares similares
-
Laplacian Eigenmaps Network-Based Nonlocal Means Method for MR Image Denoising
por: Yu, Houqiang, et al.
Publicado: (2019) -
A Lightweight YOLOv5-MNE Algorithm for SAR Ship Detection
por: Pang, Lei, et al.
Publicado: (2022) -
Circular Symmetric Laplacian Mixture Model in Wavelet Diffusion for Dental Image Denoising
por: Kafieh, Raheleh, et al.
Publicado: (2012) -
An Efficient Lightweight SAR Ship Target Detection Network with Improved Regression Loss Function and Enhanced Feature Information Expression
por: Yu, Jimin, et al.
Publicado: (2022) -
The Laplacian spectrum of neural networks
por: de Lange, Siemon C., et al.
Publicado: (2014)