Cargando…
SELID: Selective Event Labeling for Intrusion Detection Datasets
A large volume of security events, generally collected by distributed monitoring sensors, overwhelms human analysts at security operations centers and raises an alert fatigue problem. Machine learning is expected to mitigate this problem by automatically distinguishing between true alerts, or attack...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347169/ https://www.ncbi.nlm.nih.gov/pubmed/37447954 http://dx.doi.org/10.3390/s23136105 |
_version_ | 1785073486248542208 |
---|---|
author | Jang, Woohyuk Kim, Hyunmin Seo, Hyungbin Kim, Minsong Yoon, Myungkeun |
author_facet | Jang, Woohyuk Kim, Hyunmin Seo, Hyungbin Kim, Minsong Yoon, Myungkeun |
author_sort | Jang, Woohyuk |
collection | PubMed |
description | A large volume of security events, generally collected by distributed monitoring sensors, overwhelms human analysts at security operations centers and raises an alert fatigue problem. Machine learning is expected to mitigate this problem by automatically distinguishing between true alerts, or attacks, and falsely reported ones. Machine learning models should first be trained on datasets having correct labels, but the labeling process itself requires considerable human resources. In this paper, we present a new selective sampling scheme for efficient data labeling via unsupervised clustering. The new scheme transforms the byte sequence of an event into a fixed-size vector through content-defined chunking and feature hashing. Then, a clustering algorithm is applied to the vectors, and only a few samples from each cluster are selected for manual labeling. The experimental results demonstrate that the new scheme can select only 2% of the data for labeling without degrading the F1-score of the machine learning model. Two datasets, a private dataset from a real security operations center and a public dataset from the Internet for experimental reproducibility, are used. |
format | Online Article Text |
id | pubmed-10347169 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103471692023-07-15 SELID: Selective Event Labeling for Intrusion Detection Datasets Jang, Woohyuk Kim, Hyunmin Seo, Hyungbin Kim, Minsong Yoon, Myungkeun Sensors (Basel) Article A large volume of security events, generally collected by distributed monitoring sensors, overwhelms human analysts at security operations centers and raises an alert fatigue problem. Machine learning is expected to mitigate this problem by automatically distinguishing between true alerts, or attacks, and falsely reported ones. Machine learning models should first be trained on datasets having correct labels, but the labeling process itself requires considerable human resources. In this paper, we present a new selective sampling scheme for efficient data labeling via unsupervised clustering. The new scheme transforms the byte sequence of an event into a fixed-size vector through content-defined chunking and feature hashing. Then, a clustering algorithm is applied to the vectors, and only a few samples from each cluster are selected for manual labeling. The experimental results demonstrate that the new scheme can select only 2% of the data for labeling without degrading the F1-score of the machine learning model. Two datasets, a private dataset from a real security operations center and a public dataset from the Internet for experimental reproducibility, are used. MDPI 2023-07-02 /pmc/articles/PMC10347169/ /pubmed/37447954 http://dx.doi.org/10.3390/s23136105 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jang, Woohyuk Kim, Hyunmin Seo, Hyungbin Kim, Minsong Yoon, Myungkeun SELID: Selective Event Labeling for Intrusion Detection Datasets |
title | SELID: Selective Event Labeling for Intrusion Detection Datasets |
title_full | SELID: Selective Event Labeling for Intrusion Detection Datasets |
title_fullStr | SELID: Selective Event Labeling for Intrusion Detection Datasets |
title_full_unstemmed | SELID: Selective Event Labeling for Intrusion Detection Datasets |
title_short | SELID: Selective Event Labeling for Intrusion Detection Datasets |
title_sort | selid: selective event labeling for intrusion detection datasets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347169/ https://www.ncbi.nlm.nih.gov/pubmed/37447954 http://dx.doi.org/10.3390/s23136105 |
work_keys_str_mv | AT jangwoohyuk selidselectiveeventlabelingforintrusiondetectiondatasets AT kimhyunmin selidselectiveeventlabelingforintrusiondetectiondatasets AT seohyungbin selidselectiveeventlabelingforintrusiondetectiondatasets AT kimminsong selidselectiveeventlabelingforintrusiondetectiondatasets AT yoonmyungkeun selidselectiveeventlabelingforintrusiondetectiondatasets |