Cargando…
SELID: Selective Event Labeling for Intrusion Detection Datasets
A large volume of security events, generally collected by distributed monitoring sensors, overwhelms human analysts at security operations centers and raises an alert fatigue problem. Machine learning is expected to mitigate this problem by automatically distinguishing between true alerts, or attack...
Autores principales: | Jang, Woohyuk, Kim, Hyunmin, Seo, Hyungbin, Kim, Minsong, Yoon, Myungkeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347169/ https://www.ncbi.nlm.nih.gov/pubmed/37447954 http://dx.doi.org/10.3390/s23136105 |
Ejemplares similares
-
Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection
por: Seo, Jae-Hyun, et al.
Publicado: (2018) -
Sound Event Detection by Pseudo-Labeling in Weakly Labeled Dataset
por: Park, Chungho, et al.
Publicado: (2021) -
The Effect of Dataset Imbalance on the Performance of SCADA Intrusion Detection Systems
por: Balla, Asaad, et al.
Publicado: (2023) -
Dataset of intrusion detection alerts from a sharing platform
por: Husák, Martin, et al.
Publicado: (2020) -
ROSIDS23: Network intrusion detection dataset for robot operating system
por: Değirmenci, Elif, et al.
Publicado: (2023)