Cargando…
A Novel Data-Driven Fault Detection Method Based on Stable Kernel Representation for Dynamic Systems
With the steady improvement of advanced manufacturing processes and big data technologies, modern industrial systems have become large-scale. To enhance the sensitivity of fault detection (FD) and overcome the drawbacks of the centralized FD framework in dynamic systems, a new data-driven FD method...
Autores principales: | Wang, Qiang, Peng, Bo, Xie, Pu, Cheng, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347172/ https://www.ncbi.nlm.nih.gov/pubmed/37447748 http://dx.doi.org/10.3390/s23135891 |
Ejemplares similares
-
Data-driven fault detection for industrial processes: canonical correlation analysis and projection based methods
por: Chen, Zhiwen
Publicado: (2017) -
Data-driven design of fault diagnosis and fault-tolerant control systems
por: Ding, Steven X
Publicado: (2014) -
Enhanced Data Representation by Kernel Metric Learning for Dementia Diagnosis
por: Cárdenas-Peña, David, et al.
Publicado: (2017) -
A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults
por: Sun, Rui, et al.
Publicado: (2017) -
Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model
por: Wang, Weiying, et al.
Publicado: (2014)