Cargando…

Bile Acids and Short-Chain Fatty Acids Are Modulated after Onion and Apple Consumption in Obese Zucker Rats

Gut microorganisms are involved in the development and severity of different cardiovascular diseases, and increasing evidence has indicated that dietary fibre and polyphenols can interact with the intestinal microbiota. The study objective was to investigate the effect of onion and apple intake on t...

Descripción completa

Detalles Bibliográficos
Autores principales: Balderas, Claudia, de Ancos, Begoña, Sánchez-Moreno, Concepción
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347221/
https://www.ncbi.nlm.nih.gov/pubmed/37447361
http://dx.doi.org/10.3390/nu15133035
Descripción
Sumario:Gut microorganisms are involved in the development and severity of different cardiovascular diseases, and increasing evidence has indicated that dietary fibre and polyphenols can interact with the intestinal microbiota. The study objective was to investigate the effect of onion and apple intake on the major types of microbial-derived molecules, such as short-chain fatty acids (SCFAs) and bile acids (BAs). Obese Zucker rats were randomly assigned (n = eight rats/group) to a standard diet (OC), a standard diet/10% onion (OO), or a standard diet/10% apple (OA). Lean Zucker rats fed a standard diet served as a lean control (LC) group. Faecal samples were collected at baseline, and 8 weeks later, the composition of the microbial community was measured, and BA and SCFA levels were determined using high-performance liquid chromatography–mass spectrometry (HPLC-MS) and gas chromatography–mass spectrometry (GC-MS), respectively. Rats fed onion- and apple-enriched diets had increased abundance of beneficial bacteria, such as Bifidobacterium spp. and Lactobacillus spp., enhanced SCFAs (acetic, propionic, isobutyric, and valeric acids), decreased excretion of some BAs, mainly of the primary (CA, α-MCA, and β-MCA) and secondary type (ω-MCA, HDCA, NCA, DCA, and LCA), and increased amount of taurine- and glycine-conjugated BAs compared to the OC group. The contribution of specific bioactive compounds and their metabolites in the regulation of the microbiome and the pathways linked to SCFA and BA formation and their relationship with some diseases needs further research.