Cargando…

Research on Heterogeneous Traveler Travel Mode Choices with Differences under a Mixed Traffic Environment

Autonomous vehicles (AVs) have been made possible by advances in sensing and computing technologies. However, the high cost of AVs makes privatization take longer. Therefore, companies with autonomous vehicles can develop shared autonomous vehicle (SAV) projects. AVs with a high level of automation...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yutong, Wu, Yuelong, Yao, Baozhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347240/
https://www.ncbi.nlm.nih.gov/pubmed/37447940
http://dx.doi.org/10.3390/s23136091
Descripción
Sumario:Autonomous vehicles (AVs) have been made possible by advances in sensing and computing technologies. However, the high cost of AVs makes privatization take longer. Therefore, companies with autonomous vehicles can develop shared autonomous vehicle (SAV) projects. AVs with a high level of automation require high upgrade and use costs. In order to meet the needs of more customers and reduce the investment cost of the company, SAVs with different levels of automation may coexist for a long time. Faced with multiple travel modes (autonomous cars with different levels of automation, private cars, and buses), travelers’ travel mode choices are worth studying. To further differentiate the types of travelers, this paper defines high-income travelers and low-income travelers. The difference between these two types of travelers is whether they have a private car. The differences in time value and willingness to pay of the two types of travelers are considered. Based on the above considerations, this paper establishes a multi-modal selection model with the goal of maximizing the total utility of all travelers and uses the imperial competition algorithm to solve it. The results show that low-income travelers are more likely to choose buses and autonomous vehicles with lower levels of automation, while high-income travelers tend to choose higher levels of automation due to their high value of travel time.