Cargando…
Considering Image Information and Self-Similarity: A Compositional Denoising Network
Recently, convolutional neural networks (CNNs) have been widely used in image denoising, and their performance has been enhanced through residual learning. However, previous research mostly focused on optimizing the network architecture of CNNs, ignoring the limitations of the commonly used residual...
Autores principales: | Zhang, Jiahong, Zhu, Yonggui, Yu, Wenshu, Ma, Jingning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347252/ https://www.ncbi.nlm.nih.gov/pubmed/37447765 http://dx.doi.org/10.3390/s23135915 |
Ejemplares similares
-
RDASNet: Image Denoising via a Residual Dense Attention Similarity Network
por: Tao, Haowu, et al.
Publicado: (2023) -
Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation
por: Lee, Min Seok, et al.
Publicado: (2017) -
Dynamic Residual Dense Network for Image Denoising
por: Song, Yuda, et al.
Publicado: (2019) -
Denoising MR Images Using Non-Local Means Filter with Combined Patch and Pixel Similarity
por: Zhang, Xinyuan, et al.
Publicado: (2014) -
Denoising of Nifti (MRI) Images with a Regularized Neighborhood Pixel Similarity Wavelet Algorithm
por: Akindele, Romoke Grace, et al.
Publicado: (2023)