Cargando…

Ecofriendly Elimination of Ni (II) Using Fabricated Nanocomposite Based on Chitosan/Silver Nanoparticles/Carbon Nanotubes

Nickel ions are hazardous heavy metals that are non-biodegradable and can lead to allergic sensitivity and dermatitis. Nanomaterials are chosen for their effective elimination of impurities from water structures based entirely on the variety of therapy and degree of purification. The target of this...

Descripción completa

Detalles Bibliográficos
Autores principales: Azzam, Eid M. S., Elsofany, Walaa I., Abdulaziz, Fahad, AlGhamdi, Hind A., AL alhareth, Abdullah Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347260/
https://www.ncbi.nlm.nih.gov/pubmed/37447405
http://dx.doi.org/10.3390/polym15132759
Descripción
Sumario:Nickel ions are hazardous heavy metals that are non-biodegradable and can lead to allergic sensitivity and dermatitis. Nanomaterials are chosen for their effective elimination of impurities from water structures based entirely on the variety of therapy and degree of purification. The target of this work was the combination of the properties of biopolymers such as chitosan, silver nanoparticles (SNPs), and carbon nanotubes (CNTs) in one ecofriendly compound for Ni (II) uptake from the aqueous solution. To attain this target, the endeavor was made by creating a nanocomposite based on chitosan/SNPs/CNTs. The characterization of the structure of the fabricated nanocomposite (Chit-SNPs-CNTs) was carried out using different techniques. The removal of Ni (II) was examined by studying the adsorption of Ni (II) ions onto the fabricated nanocomposite by batch adsorption using UV, XRD, XPS, and ICP techniques. Moreover, we investigated the effect of the contact time, pH of the solution, and mass of the adsorbent on the efficiency of the adsorption of Ni (II). The results show that the adsorption capacity of Ni (II) increased by increasing the contact time with a neutral pH. The maximum removal of Ni (II) ions (99.70%) was found using 0.3 g of the (Chit-SNPs-CNTs) nanocomposite. In addition, the results indicate that the fabricated nanocomposite has a high adsorption effectivity, which is associated to the function of the chitosan, SNPs, and CNTs in upgrading the adsorption efficiency. Finally, the results in the existing work indicate that the ecofriendly nanocomposite organized here gave excessive effectivity closer to the elimination of Ni (II).