Cargando…
Metric Learning in Histopathological Image Classification: Opening the Black Box
The application of machine learning techniques to histopathology images enables advances in the field, providing valuable tools that can speed up and facilitate the diagnosis process. The classification of these images is a relevant aid for physicians who have to process a large number of images in...
Autores principales: | Amato, Domenico, Calderaro, Salvatore, Lo Bosco, Giosué, Rizzo, Riccardo, Vella, Filippo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347273/ https://www.ncbi.nlm.nih.gov/pubmed/37447857 http://dx.doi.org/10.3390/s23136003 |
Ejemplares similares
-
CORENup: a combination of convolutional and recurrent deep neural networks for nucleosome positioning identification
por: Amato, Domenico, et al.
Publicado: (2020) -
Deep learning models for bacteria taxonomic classification of metagenomic data
por: Fiannaca, Antonino, et al.
Publicado: (2018) -
Deep learning architectures for prediction of nucleosome positioning from sequences data
por: Di Gangi, Mattia, et al.
Publicado: (2018) -
A motif-independent metric for DNA sequence specificity
por: Pinello, Luca, et al.
Publicado: (2011) -
Opening the Leontief's black box
por: Mustafin, A., et al.
Publicado: (2018)