Cargando…
Synthetic high-energy computed tomography image via a Wasserstein generative adversarial network with the convolutional block attention module
BACKGROUND: Computed tomography (CT) is now universally applied into clinical practice with its non-invasive quality and reliability for lesion detection, which highly improves the diagnostic accuracy of patients with systemic diseases. Although low-dose CT reduces X-ray radiation dose and harm to t...
Autores principales: | Kong, Hai, Yuan, Zhidong, Zhou, Haojie, Liang, Ganglin, Yan, Zhonghong, Cheng, Guanxun, Hu, Zhanli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347326/ https://www.ncbi.nlm.nih.gov/pubmed/37456308 http://dx.doi.org/10.21037/qims-22-947 |
Ejemplares similares
-
Panchromatic Image Super-Resolution Via Self Attention-Augmented Wasserstein Generative Adversarial Network
por: Du, Juan, et al.
Publicado: (2021) -
Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation
por: Blue, John
Publicado: (2021) -
Wasserstein Uncertainty Estimation for Adversarial Domain Matching
por: Wang, Rui, et al.
Publicado: (2022) -
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
por: Friedjungová, Magda, et al.
Publicado: (2020) -
Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network
por: Erdmann, Martin, et al.
Publicado: (2018)