Cargando…
A Bi-LSTM and multihead attention-based model incorporating radiomics signatures and radiological features for differentiating the main subtypes of lung adenocarcinoma
BACKGROUND: The radiological features of computed tomography (CT) images and the sequence of radiomics signatures in continuous slices of lung CT lesions are helpful in identifying subtypes of lung adenocarcinoma. A model based on bidirectional long short-term memory (Bi-LSTM) and multihead attentio...
Autores principales: | Ren, Jinjing, Chen, Ling, Xu, Huilin, Zheng, Xinlei, Ren, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347360/ https://www.ncbi.nlm.nih.gov/pubmed/37456282 http://dx.doi.org/10.21037/qims-22-848 |
Ejemplares similares
-
Research on Named Entity Recognition Method of Metro On-Board Equipment Based on Multiheaded Self-Attention Mechanism and CNN-BiLSTM-CRF
por: Lin, Junting, et al.
Publicado: (2022) -
Graph Multihead Attention Pooling with Self-Supervised Learning
por: Wang, Yu, et al.
Publicado: (2022) -
Incorporating representation learning and multihead attention to improve biomedical cross-sentence n-ary relation extraction
por: Zhao, Di, et al.
Publicado: (2020) -
Chemical–protein interaction extraction via contextualized word representations and multihead attention
por: Zhang, Yijia, et al.
Publicado: (2019) -
Medical Text Classification Using Hybrid Deep Learning Models with Multihead Attention
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2021)