Cargando…
Partial maximum correntropy regression for robust electrocorticography decoding
The Partial Least Square Regression (PLSR) method has shown admirable competence for predicting continuous variables from inter-correlated electrocorticography signals in the brain-computer interface. However, PLSR is essentially formulated with the least square criterion, thus, being considerably p...
Autores principales: | Li, Yuanhao, Chen, Badong, Wang, Gang, Yoshimura, Natsue, Koike, Yasuharu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347400/ https://www.ncbi.nlm.nih.gov/pubmed/37457015 http://dx.doi.org/10.3389/fnins.2023.1213035 |
Ejemplares similares
-
Characteristics of Kinematic Parameters in Decoding Intended Reaching Movements Using Electroencephalography (EEG)
por: Kim, Hyeonseok, et al.
Publicado: (2019) -
A Nonlinear Maximum Correntropy Information Filter for High-Dimensional Neural Decoding
por: Liu, Xi, et al.
Publicado: (2021) -
Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection
por: Qi, Yu, et al.
Publicado: (2014) -
Rapid Decoding of Hand Gestures in Electrocorticography Using Recurrent Neural Networks
por: Pan, Gang, et al.
Publicado: (2018) -
Decoding of Covert Vowel Articulation Using Electroencephalography Cortical Currents
por: Yoshimura, Natsue, et al.
Publicado: (2016)