Cargando…

Optically Enhanced Solid-State (1)H NMR Spectroscopy

[Image: see text] Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excit...

Descripción completa

Detalles Bibliográficos
Autores principales: De Biasi, Federico, Hope, Michael A., Avalos, Claudia E., Karthikeyan, Ganesan, Casano, Gilles, Mishra, Aditya, Badoni, Saumya, Stevanato, Gabriele, Kubicki, Dominik J., Milani, Jonas, Ansermet, Jean-Philippe, Rossini, Aaron J., Lelli, Moreno, Ouari, Olivier, Emsley, Lyndon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347552/
https://www.ncbi.nlm.nih.gov/pubmed/37366803
http://dx.doi.org/10.1021/jacs.3c03937
_version_ 1785073572703633408
author De Biasi, Federico
Hope, Michael A.
Avalos, Claudia E.
Karthikeyan, Ganesan
Casano, Gilles
Mishra, Aditya
Badoni, Saumya
Stevanato, Gabriele
Kubicki, Dominik J.
Milani, Jonas
Ansermet, Jean-Philippe
Rossini, Aaron J.
Lelli, Moreno
Ouari, Olivier
Emsley, Lyndon
author_facet De Biasi, Federico
Hope, Michael A.
Avalos, Claudia E.
Karthikeyan, Ganesan
Casano, Gilles
Mishra, Aditya
Badoni, Saumya
Stevanato, Gabriele
Kubicki, Dominik J.
Milani, Jonas
Ansermet, Jean-Philippe
Rossini, Aaron J.
Lelli, Moreno
Ouari, Olivier
Emsley, Lyndon
author_sort De Biasi, Federico
collection PubMed
description [Image: see text] Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excite a suitable donor–acceptor system, creating a spin-correlated radical pair whose evolution drives nuclear hyperpolarization. Systems that exhibit photo-CIDNP in solids are not common, and this effect has, up to now, only been observed for (13)C and (15)N nuclei. However, the low gyromagnetic ratio and natural abundance of these nuclei trap the local hyperpolarization in the vicinity of the chromophore and limit the utility for bulk hyperpolarization. Here, we report the first example of optically enhanced solid-state (1)H NMR spectroscopy in the high-field regime. This is achieved via photo-CIDNP of a donor–chromophore–acceptor molecule in a frozen solution at 0.3 T and 85 K, where spontaneous spin diffusion among the abundant strongly coupled (1)H nuclei relays polarization through the whole sample, yielding a 16-fold bulk (1)H signal enhancement under continuous laser irradiation at 450 nm. These findings enable a new strategy for hyperpolarized NMR beyond the current limits of conventional microwave-driven DNP.
format Online
Article
Text
id pubmed-10347552
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103475522023-07-15 Optically Enhanced Solid-State (1)H NMR Spectroscopy De Biasi, Federico Hope, Michael A. Avalos, Claudia E. Karthikeyan, Ganesan Casano, Gilles Mishra, Aditya Badoni, Saumya Stevanato, Gabriele Kubicki, Dominik J. Milani, Jonas Ansermet, Jean-Philippe Rossini, Aaron J. Lelli, Moreno Ouari, Olivier Emsley, Lyndon J Am Chem Soc [Image: see text] Low sensitivity is the primary limitation to extending nuclear magnetic resonance (NMR) techniques to more advanced chemical and structural studies. Photochemically induced dynamic nuclear polarization (photo-CIDNP) is an NMR hyperpolarization technique where light is used to excite a suitable donor–acceptor system, creating a spin-correlated radical pair whose evolution drives nuclear hyperpolarization. Systems that exhibit photo-CIDNP in solids are not common, and this effect has, up to now, only been observed for (13)C and (15)N nuclei. However, the low gyromagnetic ratio and natural abundance of these nuclei trap the local hyperpolarization in the vicinity of the chromophore and limit the utility for bulk hyperpolarization. Here, we report the first example of optically enhanced solid-state (1)H NMR spectroscopy in the high-field regime. This is achieved via photo-CIDNP of a donor–chromophore–acceptor molecule in a frozen solution at 0.3 T and 85 K, where spontaneous spin diffusion among the abundant strongly coupled (1)H nuclei relays polarization through the whole sample, yielding a 16-fold bulk (1)H signal enhancement under continuous laser irradiation at 450 nm. These findings enable a new strategy for hyperpolarized NMR beyond the current limits of conventional microwave-driven DNP. American Chemical Society 2023-06-27 /pmc/articles/PMC10347552/ /pubmed/37366803 http://dx.doi.org/10.1021/jacs.3c03937 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle De Biasi, Federico
Hope, Michael A.
Avalos, Claudia E.
Karthikeyan, Ganesan
Casano, Gilles
Mishra, Aditya
Badoni, Saumya
Stevanato, Gabriele
Kubicki, Dominik J.
Milani, Jonas
Ansermet, Jean-Philippe
Rossini, Aaron J.
Lelli, Moreno
Ouari, Olivier
Emsley, Lyndon
Optically Enhanced Solid-State (1)H NMR Spectroscopy
title Optically Enhanced Solid-State (1)H NMR Spectroscopy
title_full Optically Enhanced Solid-State (1)H NMR Spectroscopy
title_fullStr Optically Enhanced Solid-State (1)H NMR Spectroscopy
title_full_unstemmed Optically Enhanced Solid-State (1)H NMR Spectroscopy
title_short Optically Enhanced Solid-State (1)H NMR Spectroscopy
title_sort optically enhanced solid-state (1)h nmr spectroscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347552/
https://www.ncbi.nlm.nih.gov/pubmed/37366803
http://dx.doi.org/10.1021/jacs.3c03937
work_keys_str_mv AT debiasifederico opticallyenhancedsolidstate1hnmrspectroscopy
AT hopemichaela opticallyenhancedsolidstate1hnmrspectroscopy
AT avalosclaudiae opticallyenhancedsolidstate1hnmrspectroscopy
AT karthikeyanganesan opticallyenhancedsolidstate1hnmrspectroscopy
AT casanogilles opticallyenhancedsolidstate1hnmrspectroscopy
AT mishraaditya opticallyenhancedsolidstate1hnmrspectroscopy
AT badonisaumya opticallyenhancedsolidstate1hnmrspectroscopy
AT stevanatogabriele opticallyenhancedsolidstate1hnmrspectroscopy
AT kubickidominikj opticallyenhancedsolidstate1hnmrspectroscopy
AT milanijonas opticallyenhancedsolidstate1hnmrspectroscopy
AT ansermetjeanphilippe opticallyenhancedsolidstate1hnmrspectroscopy
AT rossiniaaronj opticallyenhancedsolidstate1hnmrspectroscopy
AT lellimoreno opticallyenhancedsolidstate1hnmrspectroscopy
AT ouariolivier opticallyenhancedsolidstate1hnmrspectroscopy
AT emsleylyndon opticallyenhancedsolidstate1hnmrspectroscopy