Cargando…
Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes
Several in vitro studies utilizing 2-dimensional (2D) cell culture systems have linked 2-hydroxyethyl methacrylate (HEMA) with cytotoxic effects in oral mucosa and dental pulp cells. Although such studies are invaluable in dissecting the cellular and molecular effects of HEMA, there is a growing int...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348043/ https://www.ncbi.nlm.nih.gov/pubmed/37456807 http://dx.doi.org/10.1080/26415275.2023.2234400 |
_version_ | 1785073632697909248 |
---|---|
author | Sharma, Sunita Khan, Qalbi Schreurs, Olaf Joseph Franciscus Sapkota, Dipak Samuelsen, Jan Tore |
author_facet | Sharma, Sunita Khan, Qalbi Schreurs, Olaf Joseph Franciscus Sapkota, Dipak Samuelsen, Jan Tore |
author_sort | Sharma, Sunita |
collection | PubMed |
description | Several in vitro studies utilizing 2-dimensional (2D) cell culture systems have linked 2-hydroxyethyl methacrylate (HEMA) with cytotoxic effects in oral mucosa and dental pulp cells. Although such studies are invaluable in dissecting the cellular and molecular effects of HEMA, there is a growing interest in the utilization of appropriate 3-dimensional (3D) models that mimic the structure of oral mucosa. Using a previously characterized 3D-organotypic co-culture model, this study aimed to investigate the cellular and molecular effects of HEMA on a 3D-co-culture model consisting of primary normal oral keratinocyte (NOK) grown directly on top of collagen I gel containing primary oral fibroblasts (NOF). The second aim was to examine the suitability of a 3D-co-culture system consisting of oral squamous cell carcinoma (OSCC) cells as a model system to investigate the biological effects of HEMA. We demonstrated that HEMA treatment led to reduced viability of NOK, NOF and OSCC-cell lines in 2D-culture. The keratinocytes in 3D-co-cultures of NOK and OSCC-cells reacted similarly with respect to cell proliferation and activation of autophagy flux, to HEMA treatment. Nevertheless, NOK was found to be more susceptible to apoptosis following HEMA treatment than OSCC in 3D-co-cultures. These results indicate that 3D-organotypic co-cultures of NOK might represent an appropriate model system for the investigation of the biological effects of HEMA and other dental biomaterials. Given the challenges in obtaining primary cultures of NOK and issues associated with their rapid differentiation in culture, the possible use of OSCC cells as an alternative to NOK for 3D models represents an area for future research. |
format | Online Article Text |
id | pubmed-10348043 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-103480432023-07-15 Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes Sharma, Sunita Khan, Qalbi Schreurs, Olaf Joseph Franciscus Sapkota, Dipak Samuelsen, Jan Tore Biomater Investig Dent Original Article Several in vitro studies utilizing 2-dimensional (2D) cell culture systems have linked 2-hydroxyethyl methacrylate (HEMA) with cytotoxic effects in oral mucosa and dental pulp cells. Although such studies are invaluable in dissecting the cellular and molecular effects of HEMA, there is a growing interest in the utilization of appropriate 3-dimensional (3D) models that mimic the structure of oral mucosa. Using a previously characterized 3D-organotypic co-culture model, this study aimed to investigate the cellular and molecular effects of HEMA on a 3D-co-culture model consisting of primary normal oral keratinocyte (NOK) grown directly on top of collagen I gel containing primary oral fibroblasts (NOF). The second aim was to examine the suitability of a 3D-co-culture system consisting of oral squamous cell carcinoma (OSCC) cells as a model system to investigate the biological effects of HEMA. We demonstrated that HEMA treatment led to reduced viability of NOK, NOF and OSCC-cell lines in 2D-culture. The keratinocytes in 3D-co-cultures of NOK and OSCC-cells reacted similarly with respect to cell proliferation and activation of autophagy flux, to HEMA treatment. Nevertheless, NOK was found to be more susceptible to apoptosis following HEMA treatment than OSCC in 3D-co-cultures. These results indicate that 3D-organotypic co-cultures of NOK might represent an appropriate model system for the investigation of the biological effects of HEMA and other dental biomaterials. Given the challenges in obtaining primary cultures of NOK and issues associated with their rapid differentiation in culture, the possible use of OSCC cells as an alternative to NOK for 3D models represents an area for future research. Taylor & Francis 2023-07-13 /pmc/articles/PMC10348043/ /pubmed/37456807 http://dx.doi.org/10.1080/26415275.2023.2234400 Text en © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
spellingShingle | Original Article Sharma, Sunita Khan, Qalbi Schreurs, Olaf Joseph Franciscus Sapkota, Dipak Samuelsen, Jan Tore Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes |
title | Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes |
title_full | Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes |
title_fullStr | Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes |
title_full_unstemmed | Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes |
title_short | Investigation of biological effects of HEMA in 3D-organotypic co-culture models of normal and malignant oral keratinocytes |
title_sort | investigation of biological effects of hema in 3d-organotypic co-culture models of normal and malignant oral keratinocytes |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348043/ https://www.ncbi.nlm.nih.gov/pubmed/37456807 http://dx.doi.org/10.1080/26415275.2023.2234400 |
work_keys_str_mv | AT sharmasunita investigationofbiologicaleffectsofhemain3dorganotypiccoculturemodelsofnormalandmalignantoralkeratinocytes AT khanqalbi investigationofbiologicaleffectsofhemain3dorganotypiccoculturemodelsofnormalandmalignantoralkeratinocytes AT schreursolafjosephfranciscus investigationofbiologicaleffectsofhemain3dorganotypiccoculturemodelsofnormalandmalignantoralkeratinocytes AT sapkotadipak investigationofbiologicaleffectsofhemain3dorganotypiccoculturemodelsofnormalandmalignantoralkeratinocytes AT samuelsenjantore investigationofbiologicaleffectsofhemain3dorganotypiccoculturemodelsofnormalandmalignantoralkeratinocytes |