Cargando…
Preserving mitochondria to treat hypertrophic cardiomyopathy: From rare mitochondrial DNA mutation to heart failure therapy?
Hypertrophic cardiomyopathy and pathological cardiac hypertrophy are characterized by mitochondrial structural and functional abnormalities. In this issue of the JCI, Zhuang et al. discovered 1-deoxynojirimycin (DNJ) through a screen of mitochondrially targeted compounds. The authors described the e...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Clinical Investigation
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348762/ https://www.ncbi.nlm.nih.gov/pubmed/37463442 http://dx.doi.org/10.1172/JCI171965 |
Sumario: | Hypertrophic cardiomyopathy and pathological cardiac hypertrophy are characterized by mitochondrial structural and functional abnormalities. In this issue of the JCI, Zhuang et al. discovered 1-deoxynojirimycin (DNJ) through a screen of mitochondrially targeted compounds. The authors described the effects of DNJ in restoring mitochondria and preventing cardiac myocyte hypertrophy in cellular models carrying a mutant mitochondrial gene, MT-RNR2, which is causally implicated in familial hypertrophic cardiomyopathy. DNJ worked via stabilization of the mitochondrial inner-membrane GTPase OPA1 and other, hitherto unknown, mechanisms to preserve mitochondrial crista and respiratory chain components. The discovery is likely to spur development of a class of therapeutics that restore mitochondrial health to prevent cardiomyopathy and heart failure. |
---|