Cargando…
Periodic orbits in chaotic systems simulated at low precision
Non-periodic solutions are an essential property of chaotic dynamical systems. Simulations with deterministic finite-precision numbers, however, always yield orbits that are eventually periodic. With 64-bit double-precision floating-point numbers such periodic orbits are typically negligible due to...
Autores principales: | Klöwer, Milan, Coveney, Peter V., Paxton, E. Adam, Palmer, Tim N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349059/ https://www.ncbi.nlm.nih.gov/pubmed/37452044 http://dx.doi.org/10.1038/s41598-023-37004-4 |
Ejemplares similares
-
A New Pathology in the Simulation of Chaotic Dynamical Systems on Digital Computers
por: Boghosian, Bruce M., et al.
Publicado: (2019) -
Fluid Simulations Accelerated With 16 Bits: Approaching 4x Speedup on A64FX by Squeezing ShallowWaters.jl Into Float16
por: Klöwer, Milan, et al.
Publicado: (2022) -
Periodic-orbit theory of the number variance $\Sigma^{2}$(L) of strongly chaotic systems
por: Aurich, R, et al.
Publicado: (1994) -
Analysis and simulation of chaotic systems
por: Hoppensteadt, Frank C
Publicado: (1993) -
Analysis and simulation of chaotic systems
por: Hoppensteadt, Frank C
Publicado: (2000)