Cargando…
E pluribus unum interpretable convolutional neural networks
The adoption of convolutional neural network (CNN) models in high-stake domains is hindered by their inability to meet society’s demand for transparency in decision-making. So far, a growing number of methodologies have emerged for developing CNN models that are interpretable by design. However, suc...
Autores principales: | Dimas, George, Cholopoulou, Eirini, Iakovidis, Dimitris K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349135/ https://www.ncbi.nlm.nih.gov/pubmed/37452133 http://dx.doi.org/10.1038/s41598-023-38459-1 |
Ejemplares similares
-
E pluribus unum? On the Use of Mathematical Methods in Philosophy
por: Meier, Thomas
Publicado: (2023) -
Editorial overview of Pearls Microbiome Series: E pluribus unum
por: Hogan, Deborah A., et al.
Publicado: (2021) -
E pluribus unum: we must unify public health in the United States
por: Krasna, Heather
Publicado: (2022) -
E pluribus unum: Harmonization of physical functioning across intervention studies of middle-aged and older adults
por: Armstrong, Nicole M., et al.
Publicado: (2017) -
E pluribus unum: prospective acceptability benchmarking from the Contouring Collaborative for Consensus in Radiation Oncology crowdsourced initiative for multiobserver segmentation
por: Lin, Diana, et al.
Publicado: (2023)