Cargando…
Pparα knockout in mice increases the Th17 development by facilitating the IKKα/RORγt and IKKα/Foxp3 complexes
The helper CD4(+) T cell-type 17 (Th17) cells and regulatory CD4(+) T cells (Tregs) are balanced through numerous molecular regulators, particularly metabolic factors, and their alteration causes immune dysregulation. Herein, we report that peroxisome proliferator of activated receptor-alpha (Pparα)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349144/ https://www.ncbi.nlm.nih.gov/pubmed/37452099 http://dx.doi.org/10.1038/s42003-023-05104-6 |
Sumario: | The helper CD4(+) T cell-type 17 (Th17) cells and regulatory CD4(+) T cells (Tregs) are balanced through numerous molecular regulators, particularly metabolic factors, and their alteration causes immune dysregulation. Herein, we report that peroxisome proliferator of activated receptor-alpha (Pparα), a lipid metabolism regulator, suppresses Th17 differentiation. We demonstrated that Pparα ablation improves Th17 and pro-Th17 factor HIF-1α by enhancing the expression and nuclear localization of NFκB-activator IκB kinase-alpha (IKKα). Unexpectedly, we found that IKKα directly interacts with RORγt and enhances the expression of Il17a gene. Meanwhile, IKKα also interacts with Foxp3, leading to the post-translational regulation of Foxp3 by elevating its proteasomal degradation, and influencing Th17 development. Pparα deficiency leads to enhanced Th17 development in vivo and is associated with enhanced pathology in a murine experimental autoimmune encephalomyelitis (EAE) model. Overall, our data indicate that Pparα may serve as a potential therapeutic target for autoimmune and inflammatory diseases. |
---|