Cargando…
Time series causal relationships discovery through feature importance and ensemble models
Inferring causal relationships from observational data is a key challenge in understanding the interpretability of Machine Learning models. Given the ever-increasing amount of observational data available in many areas, Machine Learning algorithms used for forecasting have become more complex, leadi...
Autores principales: | Castro, Manuel, Mendes Júnior, Pedro Ribeiro, Soriano-Vargas, Aurea, de Oliveira Werneck, Rafael, Moreira Gonçalves, Maiara, Lusquino Filho, Leopoldo, Moura, Renato, Zampieri, Marcelo, Linares, Oscar, Ferreira, Vitor, Ferreira, Alexandre, Davólio, Alessandra, Schiozer, Denis, Rocha, Anderson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349147/ https://www.ncbi.nlm.nih.gov/pubmed/37452079 http://dx.doi.org/10.1038/s41598-023-37929-w |
Ejemplares similares
-
Causal Network Inference for Neural Ensemble Activity
por: Chen, Rong
Publicado: (2021) -
Predictive statistical mechanics: a nonequilibrium ensemble formalism
por: Luzzi, Roberto, et al.
Publicado: (2002) -
Assessing time-varying causality network of ensemble neural spiking activity
por: Kim, Sanggyun, et al.
Publicado: (2011) -
Baroreflex sensitivity differs among same strain Wistar rats from the same laboratory
por: Valenti, Vitor E., et al.
Publicado: (2011) -
History matching through dynamic decision-making
por: Cavalcante, Cristina C. B., et al.
Publicado: (2017)