Cargando…
Synthetic Model Combination: A new machine‐learning method for pharmacometric model ensembling
When aiming to make predictions over targets in the pharmacological setting, a data‐focused approach aims to learn models based on a collection of labeled examples. Unfortunately, data sharing is not always possible, and this can result in many different models trained on disparate populations, lead...
Autores principales: | Chan, Alexander, Peck, Richard, Gibbs, Megan, van der Schaar, Mihaela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349196/ https://www.ncbi.nlm.nih.gov/pubmed/37042155 http://dx.doi.org/10.1002/psp4.12965 |
Ejemplares similares
-
Evaluation of machine learning methods for covariate data imputation in pharmacometrics
por: Bräm, Dominic Stefan, et al.
Publicado: (2022) -
Assessing eligibility for lung cancer screening using parsimonious ensemble machine learning models: A development and validation study
por: Callender, Thomas, et al.
Publicado: (2023) -
Adoption of Machine Learning in Pharmacometrics: An Overview of Recent Implementations and Their Considerations
por: Janssen, Alexander, et al.
Publicado: (2022) -
Pharmacometric estimation methods for aggregate data, including data simulated from other pharmacometric models
por: Välitalo, Pyry Antti Juhana
Publicado: (2021) -
Pharmacometrics and Machine Learning Partner to Advance Clinical Data Analysis
por: Koch, Gilbert, et al.
Publicado: (2020)