Cargando…

Defecation status, intestinal microbiota, and habitual diet are associated with the fecal bile acid composition: a cross-sectional study in community-dwelling young participants

PURPOSE: Bile acid (BA) metabolism by intestinal bacteria is associated with the risk of gastrointestinal diseases; additionally, its control has become a modern strategy for treating metabolic diseases. This cross-sectional study investigated the influence of defecation status, intestinal microbiot...

Descripción completa

Detalles Bibliográficos
Autores principales: Saito, Yosuke, Sagae, Toyoaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349756/
https://www.ncbi.nlm.nih.gov/pubmed/36881180
http://dx.doi.org/10.1007/s00394-023-03126-8
Descripción
Sumario:PURPOSE: Bile acid (BA) metabolism by intestinal bacteria is associated with the risk of gastrointestinal diseases; additionally, its control has become a modern strategy for treating metabolic diseases. This cross-sectional study investigated the influence of defecation status, intestinal microbiota, and habitual diet on fecal BA composition in 67 community-dwelling young participants. METHODS: Feces were collected for intestinal microbiota and BA analyses; data about defecation status and dietary habits were collected using the Bristol stool form scales and a brief-type self-administered diet history questionnaire, respectively. The participants were categorized into four clusters based on their fecal BA composition, according to cluster analysis, and tertiles based on deoxycholic acid (DCA) and lithocholic acid (LCA) levels. RESULTS: The high primary BA (priBA) cluster with high fecal cholic acid (CA) and chenodeoxycholic acid (CDCA) levels had the highest frequency of normal feces, whereas the second BA (secBA) cluster with high levels of fecal DCA and LCA had the lowest. Alternately, the high-priBA cluster had a distinct intestinal microbiota, with higher Clostridium subcluster XIVa and lower Clostridium cluster IV and Bacteroides. The low-secBA cluster with low fecal DCA and LCA levels had the lowest animal fat intake. Nevertheless, the insoluble fiber intake of the high-priBA cluster was significantly higher than that of the high-secBA cluster. CONCLUSION: High fecal CA and CDCA levels were associated with distinct intestinal microbiota. Conversely, high levels of cytotoxic DCA and LCA were associated with increased animal fat intake and decreased frequency of normal feces and insoluble fiber intake. CLINICAL TRIAL REGISTRY: University Hospital Medical Information Network (UMIN) Center system (UMIN000045639); date of registration: 15/11/2019. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00394-023-03126-8.