Cargando…
_version_ 1785073992923611136
author De Nucci, Sara
Zupo, Roberta
Donghia, Rossella
Castellana, Fabio
Lofù, Domenico
Aresta, Simona
Guerra, Vito
Bortone, Ilaria
Lampignano, Luisa
De Pergola, Giovanni
Lozupone, Madia
Tatoli, Rossella
Sborgia, Giancarlo
Tirelli, Sarah
Panza, Francesco
Di Noia, Tommaso
Sardone, Rodolfo
author_facet De Nucci, Sara
Zupo, Roberta
Donghia, Rossella
Castellana, Fabio
Lofù, Domenico
Aresta, Simona
Guerra, Vito
Bortone, Ilaria
Lampignano, Luisa
De Pergola, Giovanni
Lozupone, Madia
Tatoli, Rossella
Sborgia, Giancarlo
Tirelli, Sarah
Panza, Francesco
Di Noia, Tommaso
Sardone, Rodolfo
author_sort De Nucci, Sara
collection PubMed
description
format Online
Article
Text
id pubmed-10349777
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-103497772023-07-17 Correction to: Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study De Nucci, Sara Zupo, Roberta Donghia, Rossella Castellana, Fabio Lofù, Domenico Aresta, Simona Guerra, Vito Bortone, Ilaria Lampignano, Luisa De Pergola, Giovanni Lozupone, Madia Tatoli, Rossella Sborgia, Giancarlo Tirelli, Sarah Panza, Francesco Di Noia, Tommaso Sardone, Rodolfo Eur J Nutr Correction Springer Berlin Heidelberg 2023-05-17 2023 /pmc/articles/PMC10349777/ /pubmed/37195486 http://dx.doi.org/10.1007/s00394-023-03174-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/ Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Correction
De Nucci, Sara
Zupo, Roberta
Donghia, Rossella
Castellana, Fabio
Lofù, Domenico
Aresta, Simona
Guerra, Vito
Bortone, Ilaria
Lampignano, Luisa
De Pergola, Giovanni
Lozupone, Madia
Tatoli, Rossella
Sborgia, Giancarlo
Tirelli, Sarah
Panza, Francesco
Di Noia, Tommaso
Sardone, Rodolfo
Correction to: Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study
title Correction to: Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study
title_full Correction to: Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study
title_fullStr Correction to: Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study
title_full_unstemmed Correction to: Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study
title_short Correction to: Dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the Salus in Apulia Study
title_sort correction to: dietary profiling of physical frailty in older age phenotypes using a machine learning approach: the salus in apulia study
topic Correction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349777/
https://www.ncbi.nlm.nih.gov/pubmed/37195486
http://dx.doi.org/10.1007/s00394-023-03174-0
work_keys_str_mv AT denuccisara correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT zuporoberta correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT donghiarossella correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT castellanafabio correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT lofudomenico correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT arestasimona correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT guerravito correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT bortoneilaria correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT lampignanoluisa correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT depergolagiovanni correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT lozuponemadia correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT tatolirossella correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT sborgiagiancarlo correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT tirellisarah correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT panzafrancesco correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT dinoiatommaso correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy
AT sardonerodolfo correctiontodietaryprofilingofphysicalfrailtyinolderagephenotypesusingamachinelearningapproachthesalusinapuliastudy