Cargando…
Efficient machine learning of solute segregation energy based on physics-informed features
Machine learning models solute segregation energy based on appropriate features of segregation sites. Lumping many features together can give a decent accuracy but may suffer the curse of dimensionality. Here, we modeled the segregation energy with efficient machine learning using physics-informed f...
Autores principales: | Ma, Zongyi, Pan, Zhiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349884/ https://www.ncbi.nlm.nih.gov/pubmed/37454224 http://dx.doi.org/10.1038/s41598-023-38533-8 |
Ejemplares similares
-
Predicting Segregation Energy in Single Atom Alloys
Using Physics and Machine Learning
por: Salem, Maya, et al.
Publicado: (2022) -
Atomistic and machine learning studies of solute segregation in metastable grain boundaries
por: Mahmood, Yasir, et al.
Publicado: (2022) -
Machine learning-based solution reveals cuproptosis features in inflammatory bowel disease
por: Liu, Le, et al.
Publicado: (2023) -
Learning grain boundary segregation energy spectra in polycrystals
por: Wagih, Malik, et al.
Publicado: (2020) -
An Efficient Machine Learning-Based Feature Optimization Model for the Detection of Dyslexia
por: Ahmad, Nazir, et al.
Publicado: (2022)