Cargando…

Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies

In genetic cardiomyopathies, a frequently described phenomenon is how similar mutations in one protein can lead to discrete clinical phenotypes. One example is illustrated by two mutations in beta myosin heavy chain (β-MHC) that are linked to hypertrophic cardiomyopathy (HCM) (Ile467Val, I467V) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Lehman, Sarah J., Meller, Artur, Solieva, Shahlo O., Lotthammer, Jeffrey M., Greenberg, Lina, Langer, Stephen J., Greenberg, Michael J., Tardiff, Jil C., Bowman, Gregory R., Leinwand, Leslie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349964/
https://www.ncbi.nlm.nih.gov/pubmed/37461648
http://dx.doi.org/10.1101/2023.07.03.547580
_version_ 1785074032745381888
author Lehman, Sarah J.
Meller, Artur
Solieva, Shahlo O.
Lotthammer, Jeffrey M.
Greenberg, Lina
Langer, Stephen J.
Greenberg, Michael J.
Tardiff, Jil C.
Bowman, Gregory R.
Leinwand, Leslie
author_facet Lehman, Sarah J.
Meller, Artur
Solieva, Shahlo O.
Lotthammer, Jeffrey M.
Greenberg, Lina
Langer, Stephen J.
Greenberg, Michael J.
Tardiff, Jil C.
Bowman, Gregory R.
Leinwand, Leslie
author_sort Lehman, Sarah J.
collection PubMed
description In genetic cardiomyopathies, a frequently described phenomenon is how similar mutations in one protein can lead to discrete clinical phenotypes. One example is illustrated by two mutations in beta myosin heavy chain (β-MHC) that are linked to hypertrophic cardiomyopathy (HCM) (Ile467Val, I467V) and left ventricular non-compaction (LVNC) (Ile467Thr, I467T). To investigate how these missense mutations lead to independent diseases, we studied the molecular effects of each mutation using recombinant human β-MHC Subfragment 1 (S1) in in vitro assays. Both HCM-I467V and LVNC-I467T S1 mutations exhibited similar mechanochemical function, including unchanged ATPase and enhanced actin velocity but had opposing effects on the super-relaxed (SRX) state of myosin. HCM-I467V S1 showed a small reduction in the SRX state, shifting myosin to a more actin-available state that may lead to the “gain-of-function” phenotype commonly described in HCM. In contrast, LVNC-I467T significantly increased the population of myosin in the ultra-slow SRX state. Interestingly, molecular dynamics simulations reveal that I467T allosterically disrupts interactions between ADP and the nucleotide-binding pocket, which may result in an increased ADP release rate. This predicted change in ADP release rate may define the enhanced actin velocity measured in LVNC-I467T, but also describe the uncoupled mechanochemical function for this mutation where the enhanced ADP release rate may be sufficient to offset the increased SRX population of myosin. These contrasting molecular effects may lead to contractile dysregulation that initiates LVNC-associated signaling pathways that progress the phenotype. Together, analysis of these mutations provides evidence that phenotypic complexity originates at the molecular level and is critical to understanding disease progression and developing therapies.
format Online
Article
Text
id pubmed-10349964
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103499642023-07-17 Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies Lehman, Sarah J. Meller, Artur Solieva, Shahlo O. Lotthammer, Jeffrey M. Greenberg, Lina Langer, Stephen J. Greenberg, Michael J. Tardiff, Jil C. Bowman, Gregory R. Leinwand, Leslie bioRxiv Article In genetic cardiomyopathies, a frequently described phenomenon is how similar mutations in one protein can lead to discrete clinical phenotypes. One example is illustrated by two mutations in beta myosin heavy chain (β-MHC) that are linked to hypertrophic cardiomyopathy (HCM) (Ile467Val, I467V) and left ventricular non-compaction (LVNC) (Ile467Thr, I467T). To investigate how these missense mutations lead to independent diseases, we studied the molecular effects of each mutation using recombinant human β-MHC Subfragment 1 (S1) in in vitro assays. Both HCM-I467V and LVNC-I467T S1 mutations exhibited similar mechanochemical function, including unchanged ATPase and enhanced actin velocity but had opposing effects on the super-relaxed (SRX) state of myosin. HCM-I467V S1 showed a small reduction in the SRX state, shifting myosin to a more actin-available state that may lead to the “gain-of-function” phenotype commonly described in HCM. In contrast, LVNC-I467T significantly increased the population of myosin in the ultra-slow SRX state. Interestingly, molecular dynamics simulations reveal that I467T allosterically disrupts interactions between ADP and the nucleotide-binding pocket, which may result in an increased ADP release rate. This predicted change in ADP release rate may define the enhanced actin velocity measured in LVNC-I467T, but also describe the uncoupled mechanochemical function for this mutation where the enhanced ADP release rate may be sufficient to offset the increased SRX population of myosin. These contrasting molecular effects may lead to contractile dysregulation that initiates LVNC-associated signaling pathways that progress the phenotype. Together, analysis of these mutations provides evidence that phenotypic complexity originates at the molecular level and is critical to understanding disease progression and developing therapies. Cold Spring Harbor Laboratory 2023-07-03 /pmc/articles/PMC10349964/ /pubmed/37461648 http://dx.doi.org/10.1101/2023.07.03.547580 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Lehman, Sarah J.
Meller, Artur
Solieva, Shahlo O.
Lotthammer, Jeffrey M.
Greenberg, Lina
Langer, Stephen J.
Greenberg, Michael J.
Tardiff, Jil C.
Bowman, Gregory R.
Leinwand, Leslie
Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies
title Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies
title_full Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies
title_fullStr Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies
title_full_unstemmed Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies
title_short Divergent Molecular Phenotypes in Point Mutations at the Same Residue in Beta-Myosin Heavy Chain Lead to Distinct Cardiomyopathies
title_sort divergent molecular phenotypes in point mutations at the same residue in beta-myosin heavy chain lead to distinct cardiomyopathies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10349964/
https://www.ncbi.nlm.nih.gov/pubmed/37461648
http://dx.doi.org/10.1101/2023.07.03.547580
work_keys_str_mv AT lehmansarahj divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT mellerartur divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT solievashahloo divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT lotthammerjeffreym divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT greenberglina divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT langerstephenj divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT greenbergmichaelj divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT tardiffjilc divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT bowmangregoryr divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies
AT leinwandleslie divergentmolecularphenotypesinpointmutationsatthesameresidueinbetamyosinheavychainleadtodistinctcardiomyopathies