Cargando…

Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system

Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of...

Descripción completa

Detalles Bibliográficos
Autores principales: Williams-Simon, Patricka A., Oster, Camille, Moaton, Jordyn A., Ghidey, Ronel, Ng’oma, Enoch, Middleton, Kevin M., Zars, Troy, King, Elizabeth G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350013/
https://www.ncbi.nlm.nih.gov/pubmed/37461510
http://dx.doi.org/10.1101/2023.07.06.547110
_version_ 1785074043117895680
author Williams-Simon, Patricka A.
Oster, Camille
Moaton, Jordyn A.
Ghidey, Ronel
Ng’oma, Enoch
Middleton, Kevin M.
Zars, Troy
King, Elizabeth G.
author_facet Williams-Simon, Patricka A.
Oster, Camille
Moaton, Jordyn A.
Ghidey, Ronel
Ng’oma, Enoch
Middleton, Kevin M.
Zars, Troy
King, Elizabeth G.
author_sort Williams-Simon, Patricka A.
collection PubMed
description Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
format Online
Article
Text
id pubmed-10350013
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-103500132023-07-17 Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system Williams-Simon, Patricka A. Oster, Camille Moaton, Jordyn A. Ghidey, Ronel Ng’oma, Enoch Middleton, Kevin M. Zars, Troy King, Elizabeth G. bioRxiv Article Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens. Cold Spring Harbor Laboratory 2023-07-07 /pmc/articles/PMC10350013/ /pubmed/37461510 http://dx.doi.org/10.1101/2023.07.06.547110 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Williams-Simon, Patricka A.
Oster, Camille
Moaton, Jordyn A.
Ghidey, Ronel
Ng’oma, Enoch
Middleton, Kevin M.
Zars, Troy
King, Elizabeth G.
Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system
title Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system
title_full Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system
title_fullStr Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system
title_full_unstemmed Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system
title_short Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system
title_sort naturally segregating genetic variants contribute to thermal tolerance in a d. melanogaster model system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350013/
https://www.ncbi.nlm.nih.gov/pubmed/37461510
http://dx.doi.org/10.1101/2023.07.06.547110
work_keys_str_mv AT williamssimonpatrickaa naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem
AT ostercamille naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem
AT moatonjordyna naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem
AT ghideyronel naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem
AT ngomaenoch naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem
AT middletonkevinm naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem
AT zarstroy naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem
AT kingelizabethg naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem