Cargando…
Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350013/ https://www.ncbi.nlm.nih.gov/pubmed/37461510 http://dx.doi.org/10.1101/2023.07.06.547110 |
_version_ | 1785074043117895680 |
---|---|
author | Williams-Simon, Patricka A. Oster, Camille Moaton, Jordyn A. Ghidey, Ronel Ng’oma, Enoch Middleton, Kevin M. Zars, Troy King, Elizabeth G. |
author_facet | Williams-Simon, Patricka A. Oster, Camille Moaton, Jordyn A. Ghidey, Ronel Ng’oma, Enoch Middleton, Kevin M. Zars, Troy King, Elizabeth G. |
author_sort | Williams-Simon, Patricka A. |
collection | PubMed |
description | Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens. |
format | Online Article Text |
id | pubmed-10350013 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-103500132023-07-17 Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system Williams-Simon, Patricka A. Oster, Camille Moaton, Jordyn A. Ghidey, Ronel Ng’oma, Enoch Middleton, Kevin M. Zars, Troy King, Elizabeth G. bioRxiv Article Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens. Cold Spring Harbor Laboratory 2023-07-07 /pmc/articles/PMC10350013/ /pubmed/37461510 http://dx.doi.org/10.1101/2023.07.06.547110 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Williams-Simon, Patricka A. Oster, Camille Moaton, Jordyn A. Ghidey, Ronel Ng’oma, Enoch Middleton, Kevin M. Zars, Troy King, Elizabeth G. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system |
title | Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system |
title_full | Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system |
title_fullStr | Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system |
title_full_unstemmed | Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system |
title_short | Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system |
title_sort | naturally segregating genetic variants contribute to thermal tolerance in a d. melanogaster model system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350013/ https://www.ncbi.nlm.nih.gov/pubmed/37461510 http://dx.doi.org/10.1101/2023.07.06.547110 |
work_keys_str_mv | AT williamssimonpatrickaa naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem AT ostercamille naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem AT moatonjordyna naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem AT ghideyronel naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem AT ngomaenoch naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem AT middletonkevinm naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem AT zarstroy naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem AT kingelizabethg naturallysegregatinggeneticvariantscontributetothermaltoleranceinadmelanogastermodelsystem |