Cargando…

Modeling the Correlation between Z and B in an X-ray Crystal Structure Refinement

We have examined how the refined B-factor changes as a function of Z (the atomic number of a scatterer) at the sulfur site of the [4Fe:4S] cluster of the nitrogenase iron protein by refinement. A simple model is developed that quantitatively captures the observed relationship between Z and B, based...

Descripción completa

Detalles Bibliográficos
Autores principales: Buscagan, Trixia M., Rees, Douglas C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350028/
https://www.ncbi.nlm.nih.gov/pubmed/37461620
http://dx.doi.org/10.1101/2023.07.04.547724
Descripción
Sumario:We have examined how the refined B-factor changes as a function of Z (the atomic number of a scatterer) at the sulfur site of the [4Fe:4S] cluster of the nitrogenase iron protein by refinement. A simple model is developed that quantitatively captures the observed relationship between Z and B, based on a Gaussian electron density distribution with a constant electron density at the position of the scatterer. From this analysis, the fractional changes in B and Z are found to be similar. The utility of B-factor refinement to potentially distinguish atom types reflects the Z dependence of X-ray atomic scattering factors; the weaker dependence of electron atomic scattering factors on Z implies that distinctions between refined values of B in an electron scattering structure will be less sensitive to the atomic identity of a scatterer than for the case with X-ray-diffraction. This behavior provides an example of the complementary information that can be extracted from different types of scattering studies.