Cargando…

Colimitation of light and nitrogen on algal growth revealed by an array microhabitat platform

Microalgae are key players in the global carbon cycle and emerging producers of biofuels. Algal growth is critically regulated by its complex microenvironment, including nitrogen and phosphorous levels, light intensity, and temperature. Mechanistic understanding of algal growth is important for main...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fangchen, Gaul, Larissa, Giometto, Andrea, Wu, Mingming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350088/
https://www.ncbi.nlm.nih.gov/pubmed/37461420
Descripción
Sumario:Microalgae are key players in the global carbon cycle and emerging producers of biofuels. Algal growth is critically regulated by its complex microenvironment, including nitrogen and phosphorous levels, light intensity, and temperature. Mechanistic understanding of algal growth is important for maintaining a balanced ecosystem at a time of climate change and population expansion, as well as providing essential formulations for optimizing biofuel production. Current mathematical models for algal growth in complex environmental conditions are still in their infancy, due in part to the lack of experimental tools necessary to generate data amenable to theoretical modeling. Here, we present a high throughput microfluidic platform that allows for algal growth with precise control over light intensity and nutrient gradients, while also performing real-time microscopic imaging. We propose a general mathematical model that describes algal growth under multiple physical and chemical environments, which we have validated experimentally. We showed that light and nitrogen colimited the growth of the model alga Chlamydomonas reinhardtii following a multiplicative Monod kinetic model. The microfluidic platform presented here can be easily adapted to studies of other photosynthetic micro-organisms, and the algal growth model will be essential for future bioreactor designs and ecological predictions.