Cargando…
Spherical CNN for Medical Imaging Applications: Importance of Equivariance in image reconstruction and denoising
This work highlights the significance of equivariant networks as efficient and high-performance approaches for tomography applications. Our study builds upon the limitations of conventional Convolutional Neural Networks (CNNs), which have shown promise in post-processing various medical imaging syst...
Autores principales: | Hashemi, Amirreza, Feng, Yuemeng, Sabet, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350095/ https://www.ncbi.nlm.nih.gov/pubmed/37461422 |
Ejemplares similares
-
Two-Stage CNN Model for Joint Demosaicing and Denoising of Burst Bayer Images
por: Tan, Hanlin, et al.
Publicado: (2022) -
Denoising Medical Images using Calculus of Variations
por: Kohan, Mahdi Nakhaie, et al.
Publicado: (2011) -
Understanding Image Representations by Measuring Their Equivariance and Equivalence
por: Lenc, Karel, et al.
Publicado: (2018) -
Grid Based Spherical CNN for Object Detection from Panoramic Images
por: Yu, Dawen, et al.
Publicado: (2019) -
Images denoising for COVID-19 chest X-ray based on multi-resolution parallel residual CNN
por: Jiang, Xiaoben, et al.
Publicado: (2021)