Cargando…
Self-Supervised Deep Learning for Model Correction in the Computational Crystallography Toolbox
The Computational Crystallography Toolbox (cctbx) is open-source software that allows for processing of crystallographic data, including from serial femtosecond crystallography (SFX), for macromolecular structure determination. We aim to use the modules in cctbx to determine the oxidation state of i...
Autores principales: | Ganapati, Vidya, Tchoń, Daniel, Brewster, Aaron S., Sauter, Nicholas K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350105/ https://www.ncbi.nlm.nih.gov/pubmed/37461412 |
Ejemplares similares
-
dxtbx: the diffraction experiment toolbox
por: Parkhurst, James M., et al.
Publicado: (2014) -
A convolutional neural network-based screening tool for X-ray serial crystallography
por: Ke, Tsung-Wei, et al.
Publicado: (2018) -
Towards in cellulo virus crystallography
por: Duyvesteyn, Helen M. E., et al.
Publicado: (2018) -
Weakly-supervised deep learning models in computational pathology
por: Augustine, Tanya N.
Publicado: (2022) -
Improving signal strength in serial crystallography with DIALS geometry refinement
por: Brewster, Aaron S., et al.
Publicado: (2018)