Cargando…
Machine Learning Models to Predict Kidney Stone Recurrence Using 24 Hour Urine Testing and Electronic Health Record-Derived Features
OBJECTIVE: To assess the accuracy of machine learning models in predicting kidney stone recurrence using variables extracted from the electronic health record (EHR). METHODS: We trained three separate machine learning (ML) models (least absolute shrinkage and selection operator regression [LASSO], r...
Autores principales: | Doyle, Patrick, Gong, Wu, Hsi, Ryan, Kavoussi, Nicholas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350114/ https://www.ncbi.nlm.nih.gov/pubmed/37461654 http://dx.doi.org/10.21203/rs.3.rs-3107998/v1 |
Ejemplares similares
-
Estimating 24-hour urinary excretion using spot urine measurements in kidney stone formers
por: Ferraro, Pietro Manuel, et al.
Publicado: (2022) -
Comparison of metabolic changes for stone risks in 24-hour urine between non- and postmenopausal women
por: Mai, Zanlin, et al.
Publicado: (2019) -
Influence of Overweight on 24-Hour Urine Chemistry Studies and Recurrent Urolithiasis in Children
por: Chung, Jae Dong, et al.
Publicado: (2012) -
Estimating 24-Hour Sodium Excretion from Spot Urine Samples in Chinese Adults: Can Spot Urine Substitute 24-Hour Urine Samples?
por: Xu, Jianwei, et al.
Publicado: (2020) -
Estimating 24-Hour Urine Sodium Level with Spot Urine Sodium and Creatinine
por: Koo, Ho Seok, et al.
Publicado: (2014)