Cargando…
Accessing Gold π-Acid Reactivity under Electrochemical Anode Oxidation (EAO) through Oxidation Relay
The gold π-acid activation under electrochemical condition is achieved for the first time. While EAO allowing easy access to gold(III) intermediates over alternative chemical oxidation under mild conditions, the reported examples so far limited to coupling reactions due to the rapid AuIII reductive...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350213/ https://www.ncbi.nlm.nih.gov/pubmed/37461542 http://dx.doi.org/10.21203/rs.3.rs-3088453/v1 |
Sumario: | The gold π-acid activation under electrochemical condition is achieved for the first time. While EAO allowing easy access to gold(III) intermediates over alternative chemical oxidation under mild conditions, the reported examples so far limited to coupling reactions due to the rapid AuIII reductive elimination. Using aryl hydrazine-HOTf salt as precursors, the π-activation reaction mode was realized through oxidation relay. Both alkene and alkyne di-functionalization were achieved with excellent functional group compatibility and regioselectivity, which extended the versatility and utility of electrochemical gold redox chemistry for future applications to come. |
---|