Cargando…
Deep Learning of Cell Spatial Organizations Identifies Clinically Relevant Insights in Tissue Images
Recent advancements in tissue imaging techniques have facilitated the visualization and identification of various cell types within physiological and pathological contexts. Despite the emergence of cell-cell interaction studies, there is a lack of methods for evaluating individual spatial interactio...
Autores principales: | Wang, Shidan, Rong, Ruichen, Yang, Donghan M., Zhang, Xinyi, Zhan, Xiaowei, Bishop, Justin, Wilhelm, Clare J., Zhang, Siyuan, Pickering, Curtis R., Kris, Mark G., Minna, John, Xie, Yang, Xiao, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350240/ https://www.ncbi.nlm.nih.gov/pubmed/37461694 http://dx.doi.org/10.21203/rs.3.rs-2928838/v1 |
Ejemplares similares
-
Artificial Intelligence in Lung Cancer Pathology Image Analysis
por: Wang, Shidan, et al.
Publicado: (2019) -
A Deep Learning Onion Peeling Approach to Measure Oral Epithelium Layer Number
por: Zhang, Xinyi, et al.
Publicado: (2023) -
ScopeViewer: A Browser-Based Solution for Visualizing Spatial Transcriptomics Data
por: Luo, Danni, et al.
Publicado: (2023) -
Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer
por: Wang, Shidan, et al.
Publicado: (2023) -
Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images
por: Wen, Zhuoyu, et al.
Publicado: (2023)