Cargando…
Smooth and accurate predictions of joint contact force time-series in gait using over parameterised deep neural networks
Alterations in joint contact forces (JCFs) are thought to be important mechanisms for the onset and progression of many musculoskeletal and orthopaedic pain disorders. Computational approaches to JCFs assessment represent the only non-invasive means of estimating in-vivo forces; but this cannot be u...
Autores principales: | Liew, Bernard X. W., Rügamer, David, Mei, Qichang, Altai, Zainab, Zhu, Xuqi, Zhai, Xiaojun, Cortes, Nelson |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350628/ https://www.ncbi.nlm.nih.gov/pubmed/37465692 http://dx.doi.org/10.3389/fbioe.2023.1208711 |
Ejemplares similares
-
Performance of multiple neural networks in predicting lower limb joint moments using wearable sensors
por: Altai, Zainab, et al.
Publicado: (2023) -
Predicting the Internal Knee Abduction Impulse During Walking Using Deep Learning
por: Boukhennoufa, Issam, et al.
Publicado: (2022) -
The Smooth Transition From Many-Legged to Bipedal Locomotion—Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions
por: Weihmann, Tom
Publicado: (2022) -
Increased Femoral Anteversion Does Not Lead to Increased Joint Forces During Gait in a Cohort of Adolescent Patients
por: Alexander, Nathalie, et al.
Publicado: (2022) -
An Algorithm for Accurate Marker-Based Gait Event Detection in Healthy and Pathological Populations During Complex Motor Tasks
por: Bonci, Tecla, et al.
Publicado: (2022)