Cargando…
LncRNA CASC15 inhibition relieves renal fibrosis in diabetic nephropathy through down-regulating SP-A by sponging to miR-424
Study has demonstrated the abnormal expression and role of lncRNA CASC15 in diabetes patients with chronic renal failure. However, its role in diabetes nephropathy (DN) is still unclear. This study aimed to investigate the potential mechanism and role of lncRNA CASC15 in DN. The relationship between...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350895/ https://www.ncbi.nlm.nih.gov/pubmed/37465354 http://dx.doi.org/10.1515/med-2023-0710 |
Sumario: | Study has demonstrated the abnormal expression and role of lncRNA CASC15 in diabetes patients with chronic renal failure. However, its role in diabetes nephropathy (DN) is still unclear. This study aimed to investigate the potential mechanism and role of lncRNA CASC15 in DN. The relationship between miR-424 and CASC15/SP-A was predicted by Starbase software and verified by luciferase reporter assay. HK-2 cells were treated with 25 mM glucose (HG) for 24 h to establish DN cell model. MTT and flow cytometry analysis were carried out to test cell proliferation and apoptosis. Epithelial-to-mesenchymal transition (EMT) markers were analyzed by RT-qPCR and western blot assay. We proved that CASC15 could interact with miR-424, and SP-A was a target of miR-424. HG-treatment significantly enhanced lncRNA CASC15 level and decreased miR-424 level in HK-2 cells. LncRNA CASC15-siRNA significantly improved cell viability, repressed apoptosis, promoted E-cadherin expression, and inhibited N-cadherin expression in HG-treated HK-2 cells, and these effects were reversed by miR-424 inhibitor. SP-A was highly expressed in HG-treated HK-2 cells. The biological effects of miR-424 mimic on HG-treated HK-2 cells were reversed by SP-A-plasmid. In conclusion, lncRNA CASC15 inhibition relieved HG-induced HK-2 cell injury and EMT through miR-424/SP-A axis. |
---|