Cargando…

DAPTEV: Deep aptamer evolutionary modelling for COVID-19 drug design

Typical drug discovery and development processes are costly, time consuming and often biased by expert opinion. Aptamers are short, single-stranded oligonucleotides (RNA/DNA) that bind to target proteins and other types of biomolecules. Compared with small-molecule drugs, aptamers can bind to their...

Descripción completa

Detalles Bibliográficos
Autores principales: Andress, Cameron, Kappel, Kalli, Villena, Marcus Elbert, Cuperlovic-Culf, Miroslava, Yan, Hongbin, Li, Yifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351721/
https://www.ncbi.nlm.nih.gov/pubmed/37406007
http://dx.doi.org/10.1371/journal.pcbi.1010774
Descripción
Sumario:Typical drug discovery and development processes are costly, time consuming and often biased by expert opinion. Aptamers are short, single-stranded oligonucleotides (RNA/DNA) that bind to target proteins and other types of biomolecules. Compared with small-molecule drugs, aptamers can bind to their targets with high affinity (binding strength) and specificity (uniquely interacting with the target only). The conventional development process for aptamers utilizes a manual process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX), which is costly, slow, dependent on library choice and often produces aptamers that are not optimized. To address these challenges, in this research, we create an intelligent approach, named DAPTEV, for generating and evolving aptamer sequences to support aptamer-based drug discovery and development. Using the COVID-19 spike protein as a target, our computational results suggest that DAPTEV is able to produce structurally complex aptamers with strong binding affinities.