Cargando…
The predictive value of radiomics-based machine learning for peritoneal metastasis in gastric cancer patients: a systematic review and meta-analysis
BACKGROUND: For patients with gastric cancer (GC), effective preoperative identification of peritoneal metastasis (PM) remains a severe challenge in clinical practice. Regrettably, effective early identification tools are still lacking up to now. With the popularization and application of radiomics...
Autores principales: | Zhang, Fan, Wu, Guoxue, Chen, Nan, Li, Ruyue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352083/ https://www.ncbi.nlm.nih.gov/pubmed/37465109 http://dx.doi.org/10.3389/fonc.2023.1196053 |
Ejemplares similares
-
Radiomics Nomogram for Prediction of Peritoneal Metastasis in Patients With Gastric Cancer
por: Huang, Weicai, et al.
Publicado: (2020) -
Dual-Energy Computed Tomography-Based Radiomics to Predict Peritoneal Metastasis in Gastric Cancer
por: Chen, Yong, et al.
Publicado: (2021) -
Predictive value of radiomics-based machine learning for the disease-free survival in breast cancer: a systematic review and meta-analysis
por: Lu, Dongmei, et al.
Publicado: (2023) -
Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer
por: Zhu, Yadi, et al.
Publicado: (2021) -
Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis
por: Li, Yilin, et al.
Publicado: (2022)