Cargando…
Unsupervised abnormality detection in neonatal MRI brain scans using deep learning
Analysis of 3D medical imaging data has been a large topic of focus in the area of Machine Learning/Artificial Intelligence, though little work has been done in algorithmic (particularly unsupervised) analysis of neonatal brain MRI’s. A myriad of conditions can manifest at an early age, including ne...
Autores principales: | Raad, Jad Dino, Chinnam, Ratna Babu, Arslanturk, Suzan, Tan, Sidhartha, Jeong, Jeong-Won, Mody, Swati |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352269/ https://www.ncbi.nlm.nih.gov/pubmed/37460615 http://dx.doi.org/10.1038/s41598-023-38430-0 |
Ejemplares similares
-
Unsupervised Inference of Protein Fitness Landscape from Deep Mutational Scan
por: Fernandez-de-Cossio-Diaz, Jorge, et al.
Publicado: (2020) -
Automated lesion detection on MRI scans using combined unsupervised and supervised methods
por: Guo, Dazhou, et al.
Publicado: (2015) -
Unsupervised Method Based on Superpixel Segmentation for Corpus Callosum Parcellation in MRI Scans
por: Jlassi, Amal, et al.
Publicado: (2020) -
Three-dimensional deep learning with spatial erasing for unsupervised anomaly segmentation in brain MRI
por: Bengs, Marcel, et al.
Publicado: (2021) -
Integrated Cancer Subtyping using Heterogeneous Genome-Scale Molecular Datasets
por: Arslanturk, Suzan, et al.
Publicado: (2020)