Cargando…
Super-resolution of magnetic systems using deep learning
We construct a deep neural network to enhance the resolution of spin structure images formed by spontaneous symmetry breaking in the magnetic systems. Through the deep neural network, an image is expanded to a super-resolution image and reduced to the original image size to be fitted with the input...
Autores principales: | Lee, D. B., Yoon, H. G., Park, S. M., Choi, J. W., Chen, G., Kwon, H. Y., Won, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352286/ https://www.ncbi.nlm.nih.gov/pubmed/37460591 http://dx.doi.org/10.1038/s41598-023-38335-y |
Ejemplares similares
-
Magnetic Hamiltonian parameter estimation using deep learning techniques
por: Kwon, H. Y., et al.
Publicado: (2020) -
Deep learning-based super-resolution in coherent imaging systems
por: Liu, Tairan, et al.
Publicado: (2019) -
Searching for the ground state of complex spin-ice systems using deep learning techniques
por: Kwon, H. Y., et al.
Publicado: (2022) -
Estimating the effective fields of spin configurations using a deep learning technique
por: Lee, D. B., et al.
Publicado: (2021) -
Super-Resolution (1)H Magnetic Resonance Spectroscopic Imaging Utilizing Deep Learning
por: Iqbal, Zohaib, et al.
Publicado: (2019)