Cargando…
Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats
Carcinogenic colorectal hemorrhage can cause severe blood loss and longitudinal ulcer, which ultimately become fatal if left untreated. The present study was aimed to formulate targeted release gemcitabine (GC)-containing magnetic microspheres (MM) of halloysite nanotubes (MHMG), chitosan (MCMG), an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352712/ https://www.ncbi.nlm.nih.gov/pubmed/37469962 http://dx.doi.org/10.1039/d3ra01581e |
_version_ | 1785074566741098496 |
---|---|
author | Majeed, Sajid Qaiser, Muhammad Shahwar, Dure Mahmood, Khalid Ahmed, Nadeem Hanif, Muhammad Abbas, Ghulam Shoaib, Muhammad Harris Ameer, Nabeela Khalid, Muhammad |
author_facet | Majeed, Sajid Qaiser, Muhammad Shahwar, Dure Mahmood, Khalid Ahmed, Nadeem Hanif, Muhammad Abbas, Ghulam Shoaib, Muhammad Harris Ameer, Nabeela Khalid, Muhammad |
author_sort | Majeed, Sajid |
collection | PubMed |
description | Carcinogenic colorectal hemorrhage can cause severe blood loss and longitudinal ulcer, which ultimately become fatal if left untreated. The present study was aimed to formulate targeted release gemcitabine (GC)-containing magnetic microspheres (MM) of halloysite nanotubes (MHMG), chitosan (MCMG), and their combination (MHCMG). The preparation of MM by magnetism was confirmed by vibrating sample magnetometry (VSM), the molecular arrangement of NH(2), alumina, and silica groups was studied by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS), the hollow spherical nature of the proposed MM was observed by scanning electron microscopy (SEM), functional groups were characterized by Fourier transform infrared (FTIR) spectroscopy and thermochemical modification was studied by thermogravimetric analysis (TGA). In vitro thrombus formation showed a decreasing trend of hemostatic time for MMs in the order of MHMG3 < MCMG3 < MHCMG7, which was confirmed by whole blood clotting kinetics. Interestingly, rat tail amputation and liver laceration showed 3 folds increased clotting efficiency of optimized MHCMG7 compared to that of control. In vivo histopathological studies and cell viability assays confirmed the regeneration of epithelial cells. The negligible systemic toxicity of MHCMG7, more than 90% entrapment of GC and high % release in alkaline medium made the proposed MM an excellent candidate for the control of hemorrhage in colorectal cancer. Conclusively, the healing of muscularis and improved recovery of the colon from granulomas ultimately improved the therapeutic effects of GC-containing MMs. The combination of both HNT and CTS microspheres made them more targeted. |
format | Online Article Text |
id | pubmed-10352712 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-103527122023-07-19 Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats Majeed, Sajid Qaiser, Muhammad Shahwar, Dure Mahmood, Khalid Ahmed, Nadeem Hanif, Muhammad Abbas, Ghulam Shoaib, Muhammad Harris Ameer, Nabeela Khalid, Muhammad RSC Adv Chemistry Carcinogenic colorectal hemorrhage can cause severe blood loss and longitudinal ulcer, which ultimately become fatal if left untreated. The present study was aimed to formulate targeted release gemcitabine (GC)-containing magnetic microspheres (MM) of halloysite nanotubes (MHMG), chitosan (MCMG), and their combination (MHCMG). The preparation of MM by magnetism was confirmed by vibrating sample magnetometry (VSM), the molecular arrangement of NH(2), alumina, and silica groups was studied by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS), the hollow spherical nature of the proposed MM was observed by scanning electron microscopy (SEM), functional groups were characterized by Fourier transform infrared (FTIR) spectroscopy and thermochemical modification was studied by thermogravimetric analysis (TGA). In vitro thrombus formation showed a decreasing trend of hemostatic time for MMs in the order of MHMG3 < MCMG3 < MHCMG7, which was confirmed by whole blood clotting kinetics. Interestingly, rat tail amputation and liver laceration showed 3 folds increased clotting efficiency of optimized MHCMG7 compared to that of control. In vivo histopathological studies and cell viability assays confirmed the regeneration of epithelial cells. The negligible systemic toxicity of MHCMG7, more than 90% entrapment of GC and high % release in alkaline medium made the proposed MM an excellent candidate for the control of hemorrhage in colorectal cancer. Conclusively, the healing of muscularis and improved recovery of the colon from granulomas ultimately improved the therapeutic effects of GC-containing MMs. The combination of both HNT and CTS microspheres made them more targeted. The Royal Society of Chemistry 2023-07-18 /pmc/articles/PMC10352712/ /pubmed/37469962 http://dx.doi.org/10.1039/d3ra01581e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Majeed, Sajid Qaiser, Muhammad Shahwar, Dure Mahmood, Khalid Ahmed, Nadeem Hanif, Muhammad Abbas, Ghulam Shoaib, Muhammad Harris Ameer, Nabeela Khalid, Muhammad Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats |
title | Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats |
title_full | Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats |
title_fullStr | Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats |
title_full_unstemmed | Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats |
title_short | Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats |
title_sort | chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352712/ https://www.ncbi.nlm.nih.gov/pubmed/37469962 http://dx.doi.org/10.1039/d3ra01581e |
work_keys_str_mv | AT majeedsajid chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT qaisermuhammad chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT shahwardure chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT mahmoodkhalid chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT ahmednadeem chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT hanifmuhammad chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT abbasghulam chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT shoaibmuhammadharris chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT ameernabeela chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats AT khalidmuhammad chitosancoatedhalloysitenanotubemagneticmicrospheresforcarcinogeniccolorectalhemorrhageandliverlacerationinalbinorats |