Cargando…

Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients

OBJECTIVE: This study aims to develop a mapping algorithm for EORTC QLQ-C30 to EQ-5D-5L which can produce utility values in patients with cancer. METHODS: We used a cross sectional study design with 300 cancer patients. The research instruments used were EORTC QLQ-C30 and EQ-5D-5L. Data were collect...

Descripción completa

Detalles Bibliográficos
Autores principales: Perwitasari, Dyah Aryani, Purba, Fredrick Dermawan, Candradewi, Susan Fitria, Marwin, Marwin, Permata, Agung, Faza, Muhammad Barik Ulfa, Septiantoro, Bayu Priyo, Kaptein, Adrian A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: West Asia Organization for Cancer Prevention 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352743/
https://www.ncbi.nlm.nih.gov/pubmed/37116132
http://dx.doi.org/10.31557/APJCP.2023.24.4.1125
_version_ 1785074574960885760
author Perwitasari, Dyah Aryani
Purba, Fredrick Dermawan
Candradewi, Susan Fitria
Marwin, Marwin
Permata, Agung
Faza, Muhammad Barik Ulfa
Septiantoro, Bayu Priyo
Kaptein, Adrian A.
author_facet Perwitasari, Dyah Aryani
Purba, Fredrick Dermawan
Candradewi, Susan Fitria
Marwin, Marwin
Permata, Agung
Faza, Muhammad Barik Ulfa
Septiantoro, Bayu Priyo
Kaptein, Adrian A.
author_sort Perwitasari, Dyah Aryani
collection PubMed
description OBJECTIVE: This study aims to develop a mapping algorithm for EORTC QLQ-C30 to EQ-5D-5L which can produce utility values in patients with cancer. METHODS: We used a cross sectional study design with 300 cancer patients. The research instruments used were EORTC QLQ-C30 and EQ-5D-5L. Data were collected by interviewing cancer patients who were hospitalized in the Kasuari Installation of Dr Kariadi Hospital Semarang, Indonesia. The Ordinary Least Squares (OLS) regression method was used to predict the utility value of EQ-5D-5L. This study uses two models to predict utility values, namely model 1 with all domains, and model 2 with domains that affect the EQ-5D-5L. The predictive power of regression on the model is evaluated by calculating the mean absolute error (MAE) and root mean square error (RMSE) values. RESULT: The highest score in the functional domain is the ‘emotional function’ domain (mean: 85.89; SD: 16.04) and the highest symptom domain is ‘weakness’ (mean: 36.21; SD:21.69). The predicted utility values of models 1 and 2 are 0.683. The mean absolute error (MAE) and root mean square error (RMSE) values of model 1 are 0.128 and 0.173, while in model 2 the MAE and RMSE values obtained are 0.125 and 0.168. CONCLUSION: The development of the mapping algorithm from the EORTC QLQ-C30 to EQ-5D-5L instrument shows a predictive value of utility in a sample of patients with cancer at Dr. Kariadi Hospital, Semarang, Indonesia. The utility prediction in both model is similar, however model 2 involves fewer domains and symptoms.
format Online
Article
Text
id pubmed-10352743
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher West Asia Organization for Cancer Prevention
record_format MEDLINE/PubMed
spelling pubmed-103527432023-07-19 Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients Perwitasari, Dyah Aryani Purba, Fredrick Dermawan Candradewi, Susan Fitria Marwin, Marwin Permata, Agung Faza, Muhammad Barik Ulfa Septiantoro, Bayu Priyo Kaptein, Adrian A. Asian Pac J Cancer Prev Research Article OBJECTIVE: This study aims to develop a mapping algorithm for EORTC QLQ-C30 to EQ-5D-5L which can produce utility values in patients with cancer. METHODS: We used a cross sectional study design with 300 cancer patients. The research instruments used were EORTC QLQ-C30 and EQ-5D-5L. Data were collected by interviewing cancer patients who were hospitalized in the Kasuari Installation of Dr Kariadi Hospital Semarang, Indonesia. The Ordinary Least Squares (OLS) regression method was used to predict the utility value of EQ-5D-5L. This study uses two models to predict utility values, namely model 1 with all domains, and model 2 with domains that affect the EQ-5D-5L. The predictive power of regression on the model is evaluated by calculating the mean absolute error (MAE) and root mean square error (RMSE) values. RESULT: The highest score in the functional domain is the ‘emotional function’ domain (mean: 85.89; SD: 16.04) and the highest symptom domain is ‘weakness’ (mean: 36.21; SD:21.69). The predicted utility values of models 1 and 2 are 0.683. The mean absolute error (MAE) and root mean square error (RMSE) values of model 1 are 0.128 and 0.173, while in model 2 the MAE and RMSE values obtained are 0.125 and 0.168. CONCLUSION: The development of the mapping algorithm from the EORTC QLQ-C30 to EQ-5D-5L instrument shows a predictive value of utility in a sample of patients with cancer at Dr. Kariadi Hospital, Semarang, Indonesia. The utility prediction in both model is similar, however model 2 involves fewer domains and symptoms. West Asia Organization for Cancer Prevention 2023 /pmc/articles/PMC10352743/ /pubmed/37116132 http://dx.doi.org/10.31557/APJCP.2023.24.4.1125 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. (https://creativecommons.org/licenses/by-nc/4.0/)
spellingShingle Research Article
Perwitasari, Dyah Aryani
Purba, Fredrick Dermawan
Candradewi, Susan Fitria
Marwin, Marwin
Permata, Agung
Faza, Muhammad Barik Ulfa
Septiantoro, Bayu Priyo
Kaptein, Adrian A.
Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients
title Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients
title_full Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients
title_fullStr Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients
title_full_unstemmed Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients
title_short Mapping EORTC-QLQ-C30 onto EQ-5D-5L Index in Indonesian Cancer Patients
title_sort mapping eortc-qlq-c30 onto eq-5d-5l index in indonesian cancer patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352743/
https://www.ncbi.nlm.nih.gov/pubmed/37116132
http://dx.doi.org/10.31557/APJCP.2023.24.4.1125
work_keys_str_mv AT perwitasaridyaharyani mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients
AT purbafredrickdermawan mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients
AT candradewisusanfitria mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients
AT marwinmarwin mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients
AT permataagung mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients
AT fazamuhammadbarikulfa mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients
AT septiantorobayupriyo mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients
AT kapteinadriana mappingeortcqlqc30ontoeq5d5lindexinindonesiancancerpatients