Cargando…

Engineering of Adhesion at Metal–Poly(lactic acid) Interfaces by Poly(dopamine): The Effect of the Annealing Temperature

[Image: see text] Control over adhesion at interfaces from strong bonding to release between thermoplastic polymers (TPs) and metal oxides is highly significant for polymer composites. In this work, we showcase a simple and inexpensive method to tune adhesion between a TP of growing interest, poly(l...

Descripción completa

Detalles Bibliográficos
Autores principales: Kafkopoulos, Georgios, Karakurt, Ezgi, Martinho, Ricardo P., Duvigneau, Joost, Vancso, G. Julius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353006/
https://www.ncbi.nlm.nih.gov/pubmed/37469884
http://dx.doi.org/10.1021/acsapm.3c00672
Descripción
Sumario:[Image: see text] Control over adhesion at interfaces from strong bonding to release between thermoplastic polymers (TPs) and metal oxides is highly significant for polymer composites. In this work, we showcase a simple and inexpensive method to tune adhesion between a TP of growing interest, poly(lactic acid) (PLA), and two commercial metal alloys, based on titanium and stainless steel. This is realized by coating titanium and stainless steel wires with polydopamine (PDA), thermally treating them under vacuum at temperatures ranging from 25 to 250 °C, and then comolding them with PLA to form pullout specimens for adhesion tests. Pullout results indicate that PDA coatings treated at low temperatures up to a given threshold significantly improve adhesion between PLA and the metals. Conversely, at higher PDA annealing temperatures beyond the threshold, interfacial bonding gradually declines. The excellent control over interfacial adhesion is attributed to the thermally induced transformation of PDA. In this work, we show using thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transform infrared, and (13)C solid-state NMR that the extent of the thermal transformation is dependent on the annealing temperature. By selecting the annealing temperature, we vary the concentration of primary amine and hydroxyl groups in PDA, which influences adhesion at the metal/PLA interface. We believe that these findings contribute to optimizing and broadening the applications of PDA in composite materials.