Cargando…
Machine learning-based radiomics analysis of preoperative functional liver reserve with MRI and CT image
OBJECTIVE: The indocyanine green retention rate at 15 min (ICG-R15) is a useful tool to evaluate the functional liver reserve before hepatectomy for liver cancer. Taking ICG-R15 as criteria, we investigated the ability of a machine learning (ML)-based radiomics model produced by Gd-EOB-DTPA-enhanced...
Autores principales: | Zhu, Ling, Wang, Feifei, Chen, Xue, Dong, Qian, Xia, Nan, Chen, Jingjing, Li, Zheng, Zhu, Chengzhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353100/ https://www.ncbi.nlm.nih.gov/pubmed/37460944 http://dx.doi.org/10.1186/s12880-023-01050-1 |
Ejemplares similares
-
Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer
por: Zhu, Yadi, et al.
Publicado: (2021) -
Unsupervised Machine Learning of MRI Radiomics Features Identifies Two Distinct Subgroups with Different Liver Function Reserve and Risks of Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma
por: Wang, Qiang, et al.
Publicado: (2023) -
Radiomics model based on preoperative gadoxetic acid-enhanced MRI for predicting liver failure
por: Zhu, Wang-Shu, et al.
Publicado: (2020) -
The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with intrahepatic cholangiocarcinoma
por: Tang, Youyin, et al.
Publicado: (2021) -
Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors
por: Yin, Ping, et al.
Publicado: (2020)