Cargando…

A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy

BACKGROUND: Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Wen, Wang, Ning, Yang, Jin, Liu, Chao, Ma, Shuang, Wang, Xiye, Li, Wenzhen, Shen, Meiling, Wu, Qinjie, Gong, Changyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353101/
https://www.ncbi.nlm.nih.gov/pubmed/37461088
http://dx.doi.org/10.1186/s12951-023-01983-3
_version_ 1785074648782733312
author Yang, Wen
Wang, Ning
Yang, Jin
Liu, Chao
Ma, Shuang
Wang, Xiye
Li, Wenzhen
Shen, Meiling
Wu, Qinjie
Gong, Changyang
author_facet Yang, Wen
Wang, Ning
Yang, Jin
Liu, Chao
Ma, Shuang
Wang, Xiye
Li, Wenzhen
Shen, Meiling
Wu, Qinjie
Gong, Changyang
author_sort Yang, Wen
collection PubMed
description BACKGROUND: Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limitations, a multifunctional “Golden Cicada” nanoplatform (MGCN) with efficient gene delivery ability and excellent photothermal effects is constructed, overcoming the thermoresistance of tumor cells and improving the accumulation of indocyanine green (ICG). RESULTS: Down-regulation of heat shock protein 70 (HSP70) makes tumor cells more susceptible to PTT, and a better therapeutic effect is achieved through such cascade augmented synergistic effects. MGCN has attractive features with prolonged circulation in blood, dual-targeting capability of CD44 and sialic acid (SA) receptors, and agile responsiveness of enzyme achieving size and charge double-variable transformation. It proves that, on the one hand, MGCN performs excellent capability for HSP70-shRNA delivery, resulting in breaking the cellular thermoresistance mechanism, on the other hand, ICG enriches in tumor site specifically and possesses a great thermal property to promoted PTT. CONCLUSIONS: In short, MGCN breaks the protective mechanism of cellular heat stress response by downregulating the expression of HSP70 proteins and significantly augments synergistic effects of photothermal/gene therapy via cascade augmented synergistic effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-023-01983-3.
format Online
Article
Text
id pubmed-10353101
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-103531012023-07-19 A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy Yang, Wen Wang, Ning Yang, Jin Liu, Chao Ma, Shuang Wang, Xiye Li, Wenzhen Shen, Meiling Wu, Qinjie Gong, Changyang J Nanobiotechnology Research BACKGROUND: Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limitations, a multifunctional “Golden Cicada” nanoplatform (MGCN) with efficient gene delivery ability and excellent photothermal effects is constructed, overcoming the thermoresistance of tumor cells and improving the accumulation of indocyanine green (ICG). RESULTS: Down-regulation of heat shock protein 70 (HSP70) makes tumor cells more susceptible to PTT, and a better therapeutic effect is achieved through such cascade augmented synergistic effects. MGCN has attractive features with prolonged circulation in blood, dual-targeting capability of CD44 and sialic acid (SA) receptors, and agile responsiveness of enzyme achieving size and charge double-variable transformation. It proves that, on the one hand, MGCN performs excellent capability for HSP70-shRNA delivery, resulting in breaking the cellular thermoresistance mechanism, on the other hand, ICG enriches in tumor site specifically and possesses a great thermal property to promoted PTT. CONCLUSIONS: In short, MGCN breaks the protective mechanism of cellular heat stress response by downregulating the expression of HSP70 proteins and significantly augments synergistic effects of photothermal/gene therapy via cascade augmented synergistic effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-023-01983-3. BioMed Central 2023-07-17 /pmc/articles/PMC10353101/ /pubmed/37461088 http://dx.doi.org/10.1186/s12951-023-01983-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Yang, Wen
Wang, Ning
Yang, Jin
Liu, Chao
Ma, Shuang
Wang, Xiye
Li, Wenzhen
Shen, Meiling
Wu, Qinjie
Gong, Changyang
A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
title A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
title_full A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
title_fullStr A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
title_full_unstemmed A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
title_short A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
title_sort multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353101/
https://www.ncbi.nlm.nih.gov/pubmed/37461088
http://dx.doi.org/10.1186/s12951-023-01983-3
work_keys_str_mv AT yangwen amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT wangning amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT yangjin amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT liuchao amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT mashuang amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT wangxiye amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT liwenzhen amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT shenmeiling amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT wuqinjie amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT gongchangyang amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT yangwen multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT wangning multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT yangjin multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT liuchao multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT mashuang multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT wangxiye multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT liwenzhen multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT shenmeiling multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT wuqinjie multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy
AT gongchangyang multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy