Cargando…
A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy
BACKGROUND: Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353101/ https://www.ncbi.nlm.nih.gov/pubmed/37461088 http://dx.doi.org/10.1186/s12951-023-01983-3 |
_version_ | 1785074648782733312 |
---|---|
author | Yang, Wen Wang, Ning Yang, Jin Liu, Chao Ma, Shuang Wang, Xiye Li, Wenzhen Shen, Meiling Wu, Qinjie Gong, Changyang |
author_facet | Yang, Wen Wang, Ning Yang, Jin Liu, Chao Ma, Shuang Wang, Xiye Li, Wenzhen Shen, Meiling Wu, Qinjie Gong, Changyang |
author_sort | Yang, Wen |
collection | PubMed |
description | BACKGROUND: Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limitations, a multifunctional “Golden Cicada” nanoplatform (MGCN) with efficient gene delivery ability and excellent photothermal effects is constructed, overcoming the thermoresistance of tumor cells and improving the accumulation of indocyanine green (ICG). RESULTS: Down-regulation of heat shock protein 70 (HSP70) makes tumor cells more susceptible to PTT, and a better therapeutic effect is achieved through such cascade augmented synergistic effects. MGCN has attractive features with prolonged circulation in blood, dual-targeting capability of CD44 and sialic acid (SA) receptors, and agile responsiveness of enzyme achieving size and charge double-variable transformation. It proves that, on the one hand, MGCN performs excellent capability for HSP70-shRNA delivery, resulting in breaking the cellular thermoresistance mechanism, on the other hand, ICG enriches in tumor site specifically and possesses a great thermal property to promoted PTT. CONCLUSIONS: In short, MGCN breaks the protective mechanism of cellular heat stress response by downregulating the expression of HSP70 proteins and significantly augments synergistic effects of photothermal/gene therapy via cascade augmented synergistic effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-023-01983-3. |
format | Online Article Text |
id | pubmed-10353101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-103531012023-07-19 A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy Yang, Wen Wang, Ning Yang, Jin Liu, Chao Ma, Shuang Wang, Xiye Li, Wenzhen Shen, Meiling Wu, Qinjie Gong, Changyang J Nanobiotechnology Research BACKGROUND: Photothermal therapy (PTT) is taken as a promising strategy for cancer therapy, however, its applicability is hampered by cellular thermoresistance of heat shock response and insufficient accumulation of photothermal transduction agents in the tumor region. In consideration of those limitations, a multifunctional “Golden Cicada” nanoplatform (MGCN) with efficient gene delivery ability and excellent photothermal effects is constructed, overcoming the thermoresistance of tumor cells and improving the accumulation of indocyanine green (ICG). RESULTS: Down-regulation of heat shock protein 70 (HSP70) makes tumor cells more susceptible to PTT, and a better therapeutic effect is achieved through such cascade augmented synergistic effects. MGCN has attractive features with prolonged circulation in blood, dual-targeting capability of CD44 and sialic acid (SA) receptors, and agile responsiveness of enzyme achieving size and charge double-variable transformation. It proves that, on the one hand, MGCN performs excellent capability for HSP70-shRNA delivery, resulting in breaking the cellular thermoresistance mechanism, on the other hand, ICG enriches in tumor site specifically and possesses a great thermal property to promoted PTT. CONCLUSIONS: In short, MGCN breaks the protective mechanism of cellular heat stress response by downregulating the expression of HSP70 proteins and significantly augments synergistic effects of photothermal/gene therapy via cascade augmented synergistic effects. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-023-01983-3. BioMed Central 2023-07-17 /pmc/articles/PMC10353101/ /pubmed/37461088 http://dx.doi.org/10.1186/s12951-023-01983-3 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Yang, Wen Wang, Ning Yang, Jin Liu, Chao Ma, Shuang Wang, Xiye Li, Wenzhen Shen, Meiling Wu, Qinjie Gong, Changyang A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy |
title | A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy |
title_full | A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy |
title_fullStr | A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy |
title_full_unstemmed | A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy |
title_short | A multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy |
title_sort | multifunctional ‘golden cicada’ nanoplatform breaks the thermoresistance barrier to launch cascade augmented synergistic effects of photothermal/gene therapy |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353101/ https://www.ncbi.nlm.nih.gov/pubmed/37461088 http://dx.doi.org/10.1186/s12951-023-01983-3 |
work_keys_str_mv | AT yangwen amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT wangning amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT yangjin amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT liuchao amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT mashuang amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT wangxiye amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT liwenzhen amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT shenmeiling amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT wuqinjie amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT gongchangyang amultifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT yangwen multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT wangning multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT yangjin multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT liuchao multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT mashuang multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT wangxiye multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT liwenzhen multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT shenmeiling multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT wuqinjie multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy AT gongchangyang multifunctionalgoldencicadananoplatformbreaksthethermoresistancebarriertolaunchcascadeaugmentedsynergisticeffectsofphotothermalgenetherapy |