Cargando…
Epigenetic mechanisms regulate cue memory underlying discriminative behavior
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353403/ https://www.ncbi.nlm.nih.gov/pubmed/35961385 http://dx.doi.org/10.1016/j.neubiorev.2022.104811 |
_version_ | 1785074705101750272 |
---|---|
author | Shang, Andrea Bieszczad, Kasia M. |
author_facet | Shang, Andrea Bieszczad, Kasia M. |
author_sort | Shang, Andrea |
collection | PubMed |
description | The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the “here and now” to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience. |
format | Online Article Text |
id | pubmed-10353403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-103534032023-07-18 Epigenetic mechanisms regulate cue memory underlying discriminative behavior Shang, Andrea Bieszczad, Kasia M. Neurosci Biobehav Rev Article The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the “here and now” to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience. 2022-10 2022-08-09 /pmc/articles/PMC10353403/ /pubmed/35961385 http://dx.doi.org/10.1016/j.neubiorev.2022.104811 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Article Shang, Andrea Bieszczad, Kasia M. Epigenetic mechanisms regulate cue memory underlying discriminative behavior |
title | Epigenetic mechanisms regulate cue memory underlying discriminative behavior |
title_full | Epigenetic mechanisms regulate cue memory underlying discriminative behavior |
title_fullStr | Epigenetic mechanisms regulate cue memory underlying discriminative behavior |
title_full_unstemmed | Epigenetic mechanisms regulate cue memory underlying discriminative behavior |
title_short | Epigenetic mechanisms regulate cue memory underlying discriminative behavior |
title_sort | epigenetic mechanisms regulate cue memory underlying discriminative behavior |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353403/ https://www.ncbi.nlm.nih.gov/pubmed/35961385 http://dx.doi.org/10.1016/j.neubiorev.2022.104811 |
work_keys_str_mv | AT shangandrea epigeneticmechanismsregulatecuememoryunderlyingdiscriminativebehavior AT bieszczadkasiam epigeneticmechanismsregulatecuememoryunderlyingdiscriminativebehavior |