Cargando…
Enhancing Green Fraction Estimation in Rice and Wheat Crops: A Self-Supervised Deep Learning Semantic Segmentation Approach
The green fraction (GF), which is the fraction of green vegetation in a given viewing direction, is closely related to the light interception ability of the crop canopy. Monitoring the dynamics of GF is therefore of great interest for breeders to identify genotypes with high radiation use efficiency...
Autores principales: | Gao, Yangmingrui, Li, Yinglun, Jiang, Ruibo, Zhan, Xiaohai, Lu, Hao, Guo, Wei, Yang, Wanneng, Ding, Yanfeng, Liu, Shouyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353659/ https://www.ncbi.nlm.nih.gov/pubmed/37469555 http://dx.doi.org/10.34133/plantphenomics.0064 |
Ejemplares similares
-
Self-Supervised Plant Phenotyping by Combining Domain Adaptation with 3D Plant Model Simulations: Application to Wheat Leaf Counting at Seedling Stage
por: Li, Yinglun, et al.
Publicado: (2023) -
Tillage, green manure and residue retention improves aggregate-associated phosphorus fractions under rice–wheat cropping
por: Sharma, Sandeep, et al.
Publicado: (2022) -
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Tillage, green manuring and crop residue management impacts on crop productivity, potassium use efficiency and potassium fractions under rice-wheat system
por: Sharma, Sandeep, et al.
Publicado: (2023) -
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021)