Cargando…
Monte Carlo samplers for efficient network inference
Accessing information on an underlying network driving a biological process often involves interrupting the process and collecting snapshot data. When snapshot data are stochastic, the data’s structure necessitates a probabilistic description to infer underlying reaction networks. As an example, we...
Autores principales: | Kilic, Zeliha, Schweiger, Max, Moyer, Camille, Pressé, Steve |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353823/ https://www.ncbi.nlm.nih.gov/pubmed/37463156 http://dx.doi.org/10.1371/journal.pcbi.1011256 |
Ejemplares similares
-
An Efficient Independence Sampler for Updating Branches in Bayesian Markov chain Monte Carlo Sampling of Phylogenetic Trees
por: Aberer, Andre J., et al.
Publicado: (2016) -
Performance of Hamiltonian Monte Carlo and No-U-Turn Sampler for estimating genetic parameters and breeding values
por: Nishio, Motohide, et al.
Publicado: (2019) -
On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo
por: Rabier, Charles-Elie, et al.
Publicado: (2021) -
Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler
por: Cheng, Chen, et al.
Publicado: (2023) -
Phylogenetic Inference via Sequential Monte Carlo
por: Bouchard-Côté, Alexandre, et al.
Publicado: (2012)