Cargando…

Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction

Patients with occlusion myocardial infarction (OMI) and no ST-elevation on presenting electrocardiogram (ECG) are increasing in numbers. These patients have a poor prognosis and would benefit from immediate reperfusion therapy, but, currently, there are no accurate tools to identify them during init...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Zaiti, Salah S., Martin-Gill, Christian, Zègre-Hemsey, Jessica K., Bouzid, Zeineb, Faramand, Ziad, Alrawashdeh, Mohammad O., Gregg, Richard E., Helman, Stephanie, Riek, Nathan T., Kraevsky-Phillips, Karina, Clermont, Gilles, Akcakaya, Murat, Sereika, Susan M., Van Dam, Peter, Smith, Stephen W., Birnbaum, Yochai, Saba, Samir, Sejdic, Ervin, Callaway, Clifton W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353937/
https://www.ncbi.nlm.nih.gov/pubmed/37386246
http://dx.doi.org/10.1038/s41591-023-02396-3
Descripción
Sumario:Patients with occlusion myocardial infarction (OMI) and no ST-elevation on presenting electrocardiogram (ECG) are increasing in numbers. These patients have a poor prognosis and would benefit from immediate reperfusion therapy, but, currently, there are no accurate tools to identify them during initial triage. Here we report, to our knowledge, the first observational cohort study to develop machine learning models for the ECG diagnosis of OMI. Using 7,313 consecutive patients from multiple clinical sites, we derived and externally validated an intelligent model that outperformed practicing clinicians and other widely used commercial interpretation systems, substantially boosting both precision and sensitivity. Our derived OMI risk score provided enhanced rule-in and rule-out accuracy relevant to routine care, and, when combined with the clinical judgment of trained emergency personnel, it helped correctly reclassify one in three patients with chest pain. ECG features driving our models were validated by clinical experts, providing plausible mechanistic links to myocardial injury.