Cargando…
The nutritional profile, mineral content and heavy metal uptake of yellow mealworm reared with supplementation of agricultural sidestreams
Insect farming, a potential approach to deal with the increasing global protein demand, is a new activity in the Western world with many unanswered questions regarding product quality and safety. Insects may fulfill an important role in a circular economy by upcycling biowaste into valuable biomass....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353995/ https://www.ncbi.nlm.nih.gov/pubmed/37463987 http://dx.doi.org/10.1038/s41598-023-38747-w |
Sumario: | Insect farming, a potential approach to deal with the increasing global protein demand, is a new activity in the Western world with many unanswered questions regarding product quality and safety. Insects may fulfill an important role in a circular economy by upcycling biowaste into valuable biomass. About half of the total mass of mealworm feeding substrates exists out of wet feed. This can be sourced from biowaste, increasing the sustainability of insect farming. This paper reports on the nutritional profile of yellow mealworm, Tenebrio molitor, reared with supplementation of organic sidestreams. These included unsold vegetables, potato cuttings, fermented chicory roots and horticultural foliage. The evaluation was performed by analyzing proximate compositions, fatty acid profiles, mineral and heavy metal contents. Mealworms fed with potato cuttings doubled their fat content and increased saturated and mono-unsaturated fatty acids. Providing fermented chicory roots increased the mineral content and accumulated heavy metals. Additionally, the uptake of minerals by mealworms was selective as only calcium, iron and manganese concentrations increased. Adding vegetable mix or horticultural foliage to the diet did not significantly change the nutritional profile. In conclusion, sidestreams were successfully recycled into protein-rich biomass and their nutrient content and bio-availability influenced the composition of mealworms. |
---|